Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

被引:96
作者
Daveau, Raphael S. [1 ]
Balram, Krishna C. [2 ,3 ]
Pregnolato, Tommaso [1 ]
Liu, Jin [2 ,3 ]
Lee, Eun H. [4 ]
Song, Jin D. [4 ]
Verma, Varun [5 ]
Mirin, Richard [5 ]
Nam, Sae Woo [5 ]
Midolo, Leonardo [1 ]
Stobbe, Soren [1 ]
Srinivasan, Kartik [2 ]
Lodahl, Peter [1 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
[2] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[3] Univ Maryland, Maryland NanoCtr, College Pk, MD 20742 USA
[4] Korea Inst Sci & Technol, Ctr Optoelect Convergence Syst, Seoul 136791, South Korea
[5] NIST, Boulder, CO 80305 USA
基金
欧洲研究理事会;
关键词
PERFORMANCE;
D O I
10.1364/OPTICA.4.000178
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide (PCWG) single-photon source relying on evanescent coupling of the light field from a tapered outcoupler to an optical fiber. A two-step approach is taken where the performance of the tapered outcoupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80%. The detailed characterization of a high-efficiency PCWG extended with a tapered outcoupling section is then performed. The corresponding overall single-photon source efficiency is 10.9% +/- 2.3%, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied outcoupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources. (C) 2017 Optical Society of America
引用
收藏
页码:178 / 184
页数:7
相关论文
共 37 条
[11]   Ultrahigh transmission optical nanofibers [J].
Hoffman, J. E. ;
Ravets, S. ;
Grover, J. A. ;
Solano, P. ;
Kordell, P. R. ;
Wong-Campos, J. D. ;
Orozco, L. A. ;
Rolston, S. L. .
AIP ADVANCES, 2014, 4 (06)
[12]   Coupling into slow-mode photonic crystal waveguides [J].
Hugonin, J. P. ;
Lalanne, P. ;
White, T. P. ;
Krauss, T. E. .
OPTICS LETTERS, 2007, 32 (18) :2638-2640
[13]   The quantum internet [J].
Kimble, H. J. .
NATURE, 2008, 453 (7198) :1023-1030
[14]  
Kirsanske G., 2016, INDISTINGUISHA UNPUB
[15]   Efficient single photon source based on μ-fibre-coupled tunable microcavity [J].
Lee, Chang-Min ;
Lim, Hee-Jin ;
Schneider, Christian ;
Maier, Sebastian ;
Hoefling, Sven ;
Kamp, Martin ;
Lee, Yong-Hee .
SCIENTIFIC REPORTS, 2015, 5
[16]  
Lodahl P, 2016, ARXIV160800446
[17]   Interfacing single photons and single quantum dots with photonic nanostructures [J].
Lodahl, Peter ;
Mahmoodian, Sahand ;
Stobbe, Soren .
REVIEWS OF MODERN PHYSICS, 2015, 87 (02) :347-400
[18]  
Loredo J. C., 2016, ARXIV160300054
[19]   Scalable performance in solid-state single-photon sources [J].
Loredo, Juan C. ;
Zakaria, Nor A. ;
Somaschi, Niccolo ;
Anton, Carlos ;
de Santis, Lorenzo ;
Giesz, Valerian ;
Grange, Thomas ;
Broome, Matthew A. ;
Gazzano, Olivier ;
Coppola, Guillaume ;
Sagnes, Isabelle ;
Lemaitre, Aristide ;
Auffeves, Alexia ;
Senellart, Pascale ;
Almeida, Marcelo P. ;
White, Andrew G. .
OPTICA, 2016, 3 (04) :433-440
[20]  
Marsili F, 2013, NAT PHOTONICS, V7, P210, DOI [10.1038/NPHOTON.2013.13, 10.1038/nphoton.2013.13]