Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

被引:96
作者
Daveau, Raphael S. [1 ]
Balram, Krishna C. [2 ,3 ]
Pregnolato, Tommaso [1 ]
Liu, Jin [2 ,3 ]
Lee, Eun H. [4 ]
Song, Jin D. [4 ]
Verma, Varun [5 ]
Mirin, Richard [5 ]
Nam, Sae Woo [5 ]
Midolo, Leonardo [1 ]
Stobbe, Soren [1 ]
Srinivasan, Kartik [2 ]
Lodahl, Peter [1 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
[2] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[3] Univ Maryland, Maryland NanoCtr, College Pk, MD 20742 USA
[4] Korea Inst Sci & Technol, Ctr Optoelect Convergence Syst, Seoul 136791, South Korea
[5] NIST, Boulder, CO 80305 USA
基金
欧洲研究理事会;
关键词
PERFORMANCE;
D O I
10.1364/OPTICA.4.000178
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide (PCWG) single-photon source relying on evanescent coupling of the light field from a tapered outcoupler to an optical fiber. A two-step approach is taken where the performance of the tapered outcoupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80%. The detailed characterization of a high-efficiency PCWG extended with a tapered outcoupling section is then performed. The corresponding overall single-photon source efficiency is 10.9% +/- 2.3%, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied outcoupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources. (C) 2017 Optical Society of America
引用
收藏
页码:178 / 184
页数:7
相关论文
共 37 条
[1]   Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide [J].
Arcari, M. ;
Sollner, I. ;
Javadi, A. ;
Hansen, S. Lindskov ;
Mahmoodian, S. ;
Liu, J. ;
Thyrrestrup, H. ;
Lee, E. H. ;
Song, J. D. ;
Stobbe, S. ;
Lodahl, P. .
PHYSICAL REVIEW LETTERS, 2014, 113 (09)
[2]  
Aspuru-Guzik A, 2012, NAT PHYS, V8, P285, DOI [10.1038/nphys2253, 10.1038/NPHYS2253]
[3]   Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation [J].
Ates, Serkan ;
Agha, Imad ;
Gulinatti, Angelo ;
Rech, Ivan ;
Badolato, Antonio ;
Srinivasan, Kartik .
SCIENTIFIC REPORTS, 2013, 3
[4]   Efficient input and output fiber coupling to a photonic crystal waveguide [J].
Barclay, PE ;
Srinivasan, K ;
Borselli, M ;
Painter, O .
OPTICS LETTERS, 2004, 29 (07) :697-699
[5]   Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction [J].
Cohen, Justin D. ;
Meenehan, Sean M. ;
Painter, Oskar .
OPTICS EXPRESS, 2013, 21 (09) :11227-11236
[6]   Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler [J].
Davanco, M. ;
Rakher, M. T. ;
Wegscheider, W. ;
Schuh, D. ;
Badolato, A. ;
Srinivasan, K. .
APPLIED PHYSICS LETTERS, 2011, 99 (12)
[7]   On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar [J].
Ding, Xing ;
He, Yu ;
Duan, Z. -C. ;
Gregersen, Niels ;
Chen, M. -C. ;
Unsleber, S. ;
Maier, S. ;
Schneider, Christian ;
Kamp, Martin ;
Hoefling, Sven ;
Lu, Chao-Yang ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2016, 116 (02)
[8]   Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity [J].
Groeblacher, Simon ;
Hill, Jeff T. ;
Safavi-Naeini, Amir H. ;
Chan, Jasper ;
Painter, Oskar .
APPLIED PHYSICS LETTERS, 2013, 103 (18)
[9]   On-chip cavity optomechanical coupling [J].
Hauer, Bradley D ;
Kim, Paul H ;
Doolin, Callum ;
MacDonald, Allison Jr ;
Ramp, Hugh ;
Davis, John P .
EPJ Techniques and Instrumentation, 2014, 1 (01)
[10]  
He Y, 2016, ARXIV160304127