Temporal convolutional networks for musical audio beat tracking

被引:34
作者
Davies, Matthew E. P. [1 ]
Boeck, Sebastian [2 ]
机构
[1] INESC TEC, Porto, Portugal
[2] Austrian Res Inst Artificial Intelligence OFAI, Vienna, Austria
来源
2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2019年
关键词
Beat Tracking; Music Signal Processing; Convolutional Neural Networks;
D O I
10.23919/eusipco.2019.8902578
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose the use of Temporal Convolutional Networks for audio-based beat tracking. By contrasting our convolutional approach with the current state-of-the-art recurrent approach using Bidirectional Long Short-Term Memory, we demonstrate three highly promising attributes of TCNs for music analysis, namely: i) they achieve state-of-the-art performance on a wide range of existing beat tracking datasets, ii) they are well suited to parallelisation and thus can be trained efficiently even on very large training data; and iii) they require a small number of weights.
引用
收藏
页数:5
相关论文
共 26 条
  • [1] [Anonymous], 2014, 2014 IEEE INT C ACOU, DOI DOI 10.1109/ICASSP.2014.6854953
  • [2] [Anonymous], 2018, PROC INT SOC MUSIC I
  • [3] Bai Shaojie, 2018, Universal language model fine-tuning for text classification
  • [4] Bock S., 2011, PROC INT C DIGITAL A, P135
  • [5] Bock S., 2014, Proceedings of the 15th International Society for Music Information Retrieval Conference, ISMIR 2014, Taipei, Taiwan, October 27-31
  • [6] Bock S., 2016, Proceedings of the 17th International Society for Music Information Retrieval Conference, P255, DOI 10.5281/zenodo.1415836
  • [7] Bock Sebastian, 2015, P ISMIR, P72
  • [8] Clevert Djork-Arne, 2015, 4 INT C LEARN REPR I
  • [9] Durand S, 2016, INT CONF ACOUST SPEE, P296, DOI 10.1109/ICASSP.2016.7471684
  • [10] Gkiokas A., Proceedings of the 18th International Society for Music Information Retrieval Conference (Suzhou, China), P286, DOI [10.5281/zenodo.1417737, DOI 10.5281/ZENODO.1417737]