Building highly stable and industrial NaVPO4F/C as bipolar electrodes for high-rate symmetric rechargeable sodium-ion full batteries

被引:44
作者
Chen, Chengcheng [2 ,3 ]
Li, Tianjiao [1 ]
Tian, Han [1 ]
Zou, Yabing [2 ]
Sun, Jianchao [1 ]
机构
[1] Yantai Univ, Sch Environm & Mat Engn, Yantai 264005, Shandong, Peoples R China
[2] China Elect Prod Reliabil & Environm Testing Res, Guangzhou 510610, Guangdong, Peoples R China
[3] Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn, Key Lab Adv Energy Mat Chem, Minist Educ,Coll Chem, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
ENERGY-STORAGE; ANODE; PERFORMANCE; NA3V2(PO4)(3); PROGRESS; NETWORK; CATHODE;
D O I
10.1039/c9ta05396d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the synthesis of carbon coated NaVPO4F (NaVPO4F/C) via industrial high-temperature calcination and its application as bipolar electrodes to build symmetric sodium ion full batteries (SIFBs). The reaction mechanism and electrochemical performance of NaVPO4F/C electrodes as both the anode and cathode have been deeply studied, respectively. This indicates that NaVPO4F/C electrodes, with negligible structural change and stable valence adjustment, are very applicable for the symmetric system. The electrodes deliver a high reversible capacity of 136 and 134 mA h g(-1) with a high ion diffusion coefficient of 3.1 x 10(-11) cm(2) s(-1) and 2.56 x 10(-11) cm(2) s(-1) as the anode and cathode, respectively. Moreover, the symmetric SIFBs with NaVPO4F/C electrodes as both the anode and cathode at the same time exhibit a considerable reversible capacity, good rate performance and long cycle life (capacity retention is 90% after 400 cycles) as designed. This work displays the potential commercial application of the symmetric SIFBs with NaVPO4F/C bipolar electrodes.
引用
收藏
页码:18451 / 18457
页数:7
相关论文
共 43 条
[1]   In-situ Preparation of Na2Ti3O7 Nanosheets as High-Performance Anodes for Sodium Ion Batteries [J].
Chen Cheng-Cheng ;
Zhang Ning ;
Liu Yong-Chang ;
Wang Yi-Jing ;
Chen Jun .
ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (01) :349-355
[2]   Rapid synthesis of three-dimensional network structure CuO as binder-free anode for high-rate sodium ion battery [J].
Chen, Chengcheng ;
Dong, Yanying ;
Li, Songyue ;
Jiang, Zhuohan ;
Wang, Yijing ;
Jiao, Lifang ;
Yuan, Huatang .
JOURNAL OF POWER SOURCES, 2016, 320 :20-27
[3]   Challenges for Na-ion Negative Electrodes [J].
Chevrier, V. L. ;
Ceder, G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1011-A1014
[4]   Negative electrodes for Na-ion batteries [J].
Dahbi, Mouad ;
Yabuuchi, Naoaki ;
Kubota, Kei ;
Tokiwa, Kazuyasu ;
Komaba, Shinichi .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (29) :15007-15028
[5]   Sodium and Sodium-Ion Batteries: 50 Years of Research [J].
Delmas, Claude .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[6]   Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium [J].
Ding, Jia ;
Hu, Wenbin ;
Paek, Eunsu ;
Mitlin, David .
CHEMICAL REVIEWS, 2018, 118 (14) :6457-6498
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]   Sodium and sodium-ion energy storage batteries [J].
Ellis, Brian L. ;
Nazar, Linda F. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) :168-177
[9]   Structure-dependent performance of TiO2/C as anode material for Na-ion batteries [J].
He, Hanna ;
Gan, Qingmeng ;
Wang, Haiyan ;
Xu, Gui-Liang ;
Zhang, Xiaoyi ;
Huang, Dan ;
Fu, Fang ;
Tang, Yougen ;
Amine, Khalil ;
Shao, Minhua .
NANO ENERGY, 2018, 44 :217-227
[10]   Electrode Materials of Sodium-Ion Batteries toward Practical Application [J].
Huang, Yangyang ;
Zheng, Yuheng ;
Li, Xiang ;
Adams, Felix ;
Luo, Wei ;
Huang, Yunhui ;
Hu, Liangbing .
ACS ENERGY LETTERS, 2018, 3 (07) :1604-1612