Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment

被引:194
作者
Chen, Dima [1 ,2 ]
Li, Jianjun [1 ]
Lan, Zhichun [1 ]
Hu, Shuijin [2 ]
Bai, Yongfei [1 ]
机构
[1] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China
[2] N Carolina State Univ, Dept Plant Pathol, Box 7616, Raleigh, NC 27695 USA
关键词
base mineral cations; below-ground carbon allocation; microbial respiration; plant functional group; root nitrogen content; root respiration; root specific respiration; soil microbial community; ROOT RESPIRATION; SUBTROPICAL PLANTATIONS; MICROBIAL COMMUNITIES; PLANT DIVERSITY; CARBON STORAGE; CO2; EFFLUX; DEPOSITION; ACID; PRODUCTIVITY; DECLINES;
D O I
10.1111/1365-2435.12525
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide-range of impacts on biotic communities and hence on soil respiration. Reduction in below-ground carbon (C) allocation induced by high N availability has been assumed to be a major mechanism determining the effects of N enrichment on soil respiration. In addition to increasing available N, however, N enrichment causes soil acidification, which may also affect root and microbial activities. The relative importance of increased N availability vs. soil acidification on soil respiration in natural ecosystems experiencing N enrichment is unclear. We conducted a 12-year N enrichment experiment and a 4-year complementary acid addition experiment in a semi-arid Inner Mongolian grassland. We found that N enrichment had contrasting effects on root and microbial respiration. N enrichment significantly increased root biomass, root N content and specific root respiration, thereby promoting root respiration. In contrast, N enrichment significantly suppressed microbial respiration likely by reducing total microbial biomass and changing the microbial community composition. The effect on root activities was due to both soil acidity and increased available N, while the effect on microbes primarily stemmed from soil acidity, which was further confirmed by results from the acid addition experiment. Our results indicate that soil acidification exerts a greater control than soil N availability on soil respiration in grasslands experiencing long-term N enrichment. These findings suggest that N-induced soil acidification should be included in predicting terrestrial ecosystem C balance under future N deposition scenarios.
引用
收藏
页码:658 / 669
页数:12
相关论文
共 50 条
  • [31] Soil respiration, nitrogen mineralization and uptake in barley following cultivation of grazed grasslands
    Eriksen, J
    Jensen, LS
    BIOLOGY AND FERTILITY OF SOILS, 2001, 33 (02) : 139 - 145
  • [32] Biotic and abiotic controls on the diel and seasonal variation in soil respiration and its components in a wheat field under long-term nitrogen fertilization
    Zhong, Yangquanwei
    Yan, Weiming
    Zong, Yuzheng
    Shangguan, Zhouping
    FIELD CROPS RESEARCH, 2016, 199 : 1 - 9
  • [33] Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: Evidence from a long-term grassland experiment
    Yuan, Xiaobo
    Niu, Decao
    Gherardi, Laureano A.
    Liu, Yanbin
    Wang, Ying
    Elser, James J.
    Fu, Hua
    SOIL BIOLOGY & BIOCHEMISTRY, 2019, 138
  • [34] Water-dominated negative effects of nitrogen enrichment on soil respiration in a temperate steppe
    Li, Kunyu
    Niu, Mengnan
    Bai, Wenming
    Yang, Zhongling
    Li, Guoyong
    APPLIED SOIL ECOLOGY, 2021, 165
  • [35] Chronic nitrogen enrichment decreases soil gross nitrogen mineralization by acidification in topsoil but by carbon limitation in subsoil
    Song, Lei
    Wang, Jinsong
    Pan, Junxiao
    Yan, Yingjie
    Niu, Shuli
    GEODERMA, 2022, 428
  • [36] Soil respiration and its autotrophic and heterotrophic components in response to nitrogen addition among different degraded temperate grasslands
    Zeng, Wenjing
    Chen, Jinbin
    Liu, Hongyan
    Wang, Wei
    SOIL BIOLOGY & BIOCHEMISTRY, 2018, 124 : 255 - 265
  • [37] Effects of Long-Term Fertilization on Soil Carbon and Nitrogen in Chinese Mollisols
    Jiao, Xiaoguang
    Gao, Chongsheng
    Sui, Yueyu
    Lu, Guohong
    Wei, Dan
    AGRONOMY JOURNAL, 2014, 106 (03) : 1018 - 1024
  • [38] Carbon limitation overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate grassland
    Ning, Qiushi
    Hattenschwiler, Stephan
    Lu, Xiaotao
    Kardol, Paul
    Zhang, Yunhai
    Wei, Cunzheng
    Xu, Chengyuan
    Huang, Jianhui
    Li, Ang
    Yang, Junjie
    Wang, Jing
    Peng, Yang
    Penuelas, Josep
    Sardans, Jordi
    He, Jizheng
    Xu, Zhihong
    Gao, Yingzhi
    Han, Xingguo
    GLOBAL CHANGE BIOLOGY, 2021, 27 (22) : 5976 - 5988
  • [39] Soil microbial community responses to long-term nitrogen addition at different soil depths in a typical steppe
    Niu, Guoxiang
    Hasi, Muqier
    Wang, Ruzhen
    Wang, Yinliu
    Geng, Qianqian
    Hu, Shuya
    Xu, Xiaohui
    Yang, Junjie
    Wang, Changhui
    Han, Xingguo
    Huang, Jianhui
    APPLIED SOIL ECOLOGY, 2021, 167
  • [40] Long-term tobacco plantation induces soil acidification and soil base cation loss
    Zhang, Yuting
    He, Xinhua
    Liang, Hong
    Zhao, Jian
    Zhang, Yueqiang
    Xu, Chen
    Shi, Xiaojun
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (06) : 5442 - 5450