Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment

被引:208
作者
Chen, Dima [1 ,2 ]
Li, Jianjun [1 ]
Lan, Zhichun [1 ]
Hu, Shuijin [2 ]
Bai, Yongfei [1 ]
机构
[1] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China
[2] N Carolina State Univ, Dept Plant Pathol, Box 7616, Raleigh, NC 27695 USA
关键词
base mineral cations; below-ground carbon allocation; microbial respiration; plant functional group; root nitrogen content; root respiration; root specific respiration; soil microbial community; ROOT RESPIRATION; SUBTROPICAL PLANTATIONS; MICROBIAL COMMUNITIES; PLANT DIVERSITY; CARBON STORAGE; CO2; EFFLUX; DEPOSITION; ACID; PRODUCTIVITY; DECLINES;
D O I
10.1111/1365-2435.12525
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide-range of impacts on biotic communities and hence on soil respiration. Reduction in below-ground carbon (C) allocation induced by high N availability has been assumed to be a major mechanism determining the effects of N enrichment on soil respiration. In addition to increasing available N, however, N enrichment causes soil acidification, which may also affect root and microbial activities. The relative importance of increased N availability vs. soil acidification on soil respiration in natural ecosystems experiencing N enrichment is unclear. We conducted a 12-year N enrichment experiment and a 4-year complementary acid addition experiment in a semi-arid Inner Mongolian grassland. We found that N enrichment had contrasting effects on root and microbial respiration. N enrichment significantly increased root biomass, root N content and specific root respiration, thereby promoting root respiration. In contrast, N enrichment significantly suppressed microbial respiration likely by reducing total microbial biomass and changing the microbial community composition. The effect on root activities was due to both soil acidity and increased available N, while the effect on microbes primarily stemmed from soil acidity, which was further confirmed by results from the acid addition experiment. Our results indicate that soil acidification exerts a greater control than soil N availability on soil respiration in grasslands experiencing long-term N enrichment. These findings suggest that N-induced soil acidification should be included in predicting terrestrial ecosystem C balance under future N deposition scenarios.
引用
收藏
页码:658 / 669
页数:12
相关论文
共 51 条
[1]   Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands [J].
Bai, Yongfei ;
Wu, Jianguo ;
Clark, Christopher M. ;
Naeem, Shahid ;
Pan, Qingmin ;
Huang, Jianhui ;
Zhang, Lixia ;
Han, Xingguo .
GLOBAL CHANGE BIOLOGY, 2010, 16 (01) :358-372
[2]   Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis [J].
Bobbink, R. ;
Hicks, K. ;
Galloway, J. ;
Spranger, T. ;
Alkemade, R. ;
Ashmore, M. ;
Bustamante, M. ;
Cinderby, S. ;
Davidson, E. ;
Dentener, F. ;
Emmett, B. ;
Erisman, J. -W. ;
Fenn, M. ;
Gilliam, F. ;
Nordin, A. ;
Pardo, L. ;
De Vries, W. .
ECOLOGICAL APPLICATIONS, 2010, 20 (01) :30-59
[3]   A global relationship between the heterotrophic and autotrophic components of soil respiration? [J].
Bond-Lamberty, B ;
Wang, CK ;
Gower, ST .
GLOBAL CHANGE BIOLOGY, 2004, 10 (10) :1756-1766
[4]   Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles [J].
Bossio, DA ;
Scow, KM ;
Gunapala, N ;
Graham, KJ .
MICROBIAL ECOLOGY, 1998, 36 (01) :1-12
[5]   Negative impact of nitrogen deposition on soil buffering capacity [J].
Bowman, William D. ;
Cleveland, Cory C. ;
Halada, Lubos ;
Hresko, Juraj ;
Baron, Jill S. .
NATURE GEOSCIENCE, 2008, 1 (11) :767-770
[6]   Measurement carbon dioxide concentration does not affect root respiration of nine tree species in the field [J].
Burton, AJ ;
Pregitzer, KS .
TREE PHYSIOLOGY, 2002, 22 (01) :67-72
[7]   Chronic N deposition alters root respiration-tissue N relationship in northern hardwood forests [J].
Burton, Andrew J. ;
Jarvey, Julie C. ;
Jarvi, Mickey P. ;
Zak, Donald R. ;
Pregitzer, Kurt S. .
GLOBAL CHANGE BIOLOGY, 2012, 18 (01) :258-266
[8]  
Chen D., 2015, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.rk987, DOI 10.5061/DRYAD.RK987]
[9]   Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe [J].
Chen, Dima ;
Lan, Zhichun ;
Bai, Xue ;
Grace, James B. ;
Bai, Yongfei .
JOURNAL OF ECOLOGY, 2013, 101 (05) :1322-1334
[10]   Subtropical plantations are large carbon sinks: Evidence from two monoculture plantations in South China [J].
Chen, Dima ;
Zhang, Chenlu ;
Wu, Jianping ;
Zhou, Lixia ;
Lin, Yongbiao ;
Fu, Shenglei .
AGRICULTURAL AND FOREST METEOROLOGY, 2011, 151 (09) :1214-1225