A spectral bundle method for semidefinite programming

被引:244
|
作者
Helmberg, C
Rendl, F
机构
[1] Konrad Zuse Zentrum Informat Tech Berlin, D-14195 Berlin, Germany
[2] Univ Klagenfurt, Inst Math, A-9020 Klagenfurt, Austria
关键词
eigenvalue optimization; convex optimization; semidefinite programming; proximal bundle method; large-scale problems;
D O I
10.1137/S1052623497328987
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A central drawback of primal-dual interior point methods for semidefinite programs is their lack of ability to exploit problem structure in cost and coefficient matrices. This restricts applicability to problems of small dimension. Typically, semidefinite relaxations arising in combinatorial applications have sparse and well-structured cost and coefficient matrices of huge order. We present a method that allows us to compute acceptable approximations to the optimal solution of large problems within reasonable time. Semidefinite programming problems with constant trace on the primal feasible set are equivalent to eigenvalue optimization problems. These are convex nonsmooth programming problems and can be solved by bundle methods. We propose replacing the traditional polyhedral cutting plane model constructed from subgradient information by a semidefinite model that is tailored to eigenvalue problems. Convergence follows from the traditional approach but a proof is included for completeness. We present numerical examples demonstrating the efficiency of the approach on combinatorial examples.
引用
收藏
页码:673 / 696
页数:24
相关论文
共 50 条
  • [1] An inexact spectral bundle method for convex quadratic semidefinite programming
    Huiling Lin
    Computational Optimization and Applications, 2012, 53 : 45 - 89
  • [2] An inexact spectral bundle method for convex quadratic semidefinite programming
    Lin, Huiling
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 53 (01) : 45 - 89
  • [3] A spectral bundle method with bounds
    Helmberg, C
    Kiwiel, KC
    MATHEMATICAL PROGRAMMING, 2002, 93 (02) : 173 - 194
  • [4] Semidefinite programming
    Vandenberghe, L
    Boyd, S
    SIAM REVIEW, 1996, 38 (01) : 49 - 95
  • [5] A proximal-projection bundle method for Lagrangian relaxation, including semidefinite programming
    Kiwiel, Krzysztof C.
    SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (04) : 1015 - 1034
  • [6] A subspace semidefinite programming for spectral graph partitioning
    Oliveira, S
    Stewart, D
    Soma, T
    COMPUTATIONAL SCIENCE-ICCS 2002, PT I, PROCEEDINGS, 2002, 2329 : 1058 - 1067
  • [7] Scalable Semidefinite Programming
    Yurtsever, Alp
    Tropp, Joel A.
    Fercoq, Olivier
    Udell, Madeleine
    Cevher, Volkan
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2021, 3 (01): : 171 - 200
  • [8] A load dispatch method using fractional programming and semidefinite programming
    Kobayashi, Y
    Sawa, T
    Furukawa, T
    Kawamoto, S
    ELECTRICAL ENGINEERING IN JAPAN, 2002, 138 (02) : 49 - 58
  • [9] A RELAXED LOGARITHMIC BARRIER METHOD FOR SEMIDEFINITE PROGRAMMING
    Samia, Kettab
    Djamel, Benterki
    RAIRO-OPERATIONS RESEARCH, 2015, 49 (03) : 555 - 568
  • [10] A proximal augmented method for semidefinite programming problems
    Huang, Aiqun
    APPLIED NUMERICAL MATHEMATICS, 2021, 169 : 321 - 333