Effect of magnetic field strength on deposition rate and energy flux in a dc magnetron sputtering system

被引:30
作者
Ekpe, Samuel D. [1 ]
Jimenez, Francisco J. [1 ]
Field, David J. [2 ]
Davis, Martin J. [2 ]
Dew, Steven K. [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
[2] NUCRYST Pharmaceut, Ft Saskatchewan, AB T8L 3W4, Canada
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2009年 / 27卷 / 06期
关键词
PHYSICAL VAPOR-DEPOSITION; SUBSTRATE; FILMS; TEMPERATURE; PLASMA;
D O I
10.1116/1.3222874
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Variations in the magnetic field strongly affect the plasma parameters in a magnetron sputtering system. This in turn affects the throughput as well as the energy flux to the substrate. The variation in the magnetic field in this study, for a dc magnetron process, is achieved by shifting the magnet assembly slightly away from the target. Measurements of the plasma parameters show that while the electron density at the substrate increases with decrease in magnetic field, the electron temperature decreases. The cooling of the electron temperature is consistent with results reported elsewhere. The deposition rate per input magnetron power is found to increase slightly with the decrease in magnetic field for the process conditions considered in this study. Results suggest that the energy flux to the substrate tends to show a general decrease with the shift in the magnet assembly. (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3222874]
引用
收藏
页码:1275 / 1280
页数:6
相关论文
共 26 条
[1]   ENERGY DEPOSITION AND SUBSTRATE HEATING DURING MAGNETRON SPUTTERING [J].
ANDRITSCHKY, M ;
GUIMARAES, F ;
TEIXEIRA, V .
VACUUM, 1993, 44 (08) :809-813
[2]  
Class WH, 1980, US patent, Patent No. [4 198 283, 4198283]
[3]   Quenching of electron temperature and electron density in ionized physical vapor deposition [J].
Dickson, M ;
Qian, F ;
Hopwood, J .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1997, 15 (02) :340-344
[4]  
Drüsedau TP, 1999, J VAC SCI TECHNOL A, V17, P2896, DOI 10.1116/1.581957
[5]   Direct measurements of the energy flux due to chemical reactions at the surface of a silicon sample interacting with a SF6 plasma [J].
Dussart, R. ;
Thomann, A. L. ;
Pichon, L. E. ;
Bedra, L. ;
Semmar, N. ;
Lefaucheux, P. ;
Mathias, J. ;
Tessier, Y. .
APPLIED PHYSICS LETTERS, 2008, 93 (13)
[6]   Measurement of energy flux at the substrate in a magnetron sputter system using an integrated sensor [J].
Ekpe, SD ;
Dew, SK .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2004, 22 (04) :1420-1424
[7]   Theoretical and experimental determination of the energy flux-during magnetron sputter deposition onto an unbiased substrate [J].
Ekpe, SD ;
Dew, SK .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2003, 21 (02) :476-483
[8]   Investigation of thermal flux to the substrate during sputter deposition of aluminum [J].
Ekpe, SD ;
Dew, SK .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 2002, 20 (06) :1877-1885
[9]   Spatial survey of a magnetron plasma sputtering system using a Langmuir probe [J].
Field, DJ ;
Dew, SK ;
Burrell, RE .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 2002, 20 (06) :2032-2041
[10]   MAGNETIC-FIELD DEPENDENCE OF SPUTTERING MAGNETRON EFFICIENCY [J].
GOREE, J ;
SHERIDAN, TE .
APPLIED PHYSICS LETTERS, 1991, 59 (09) :1052-1054