A Characterization Related to the Dirichlet Problem for an Elliptic Equation

被引:4
|
作者
Anello, Giovanni [1 ]
机构
[1] Univ Messina, Dept Math & Comp Sci Phys Sci & Earth Sci, Viale F Stagno dAlcontres, I-98166 Messina, Italy
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2016年 / 59卷 / 01期
关键词
Elliptic equation; Boundary value problem; Positiv solution; Variational method;
D O I
10.1619/fesi.59.113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a bounded domain in R-N with smooth boundary. Let f : [0, +infinity[ -> [0, +infinity[, with f (0) = 0, be a continuous function such that, for some a> 0, the function xi is an element of]0, +infinity[->xi(-2).integral(xi)(0) f(t)dt is non increasing in]0, a[. Finally, let alpha : (Omega) over bar -> [0, +infinity[ be a continuous function with alpha(x) > 0, for all x is an element of Omega. We establish a necessary and sufficient condition for the existence of solutions to the following problem -Delta u = lambda alpha(x)f(u) in Omega, u > 0 in Omega, u= 0 on partial derivative Omega, where lambda is a positive parameter. Our result extends to higher dimension a similar characterization very recently established by Ricceri in the one dimensional case.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 50 条