Finite Element Discretization of the Giesekus Model for Polymer Flows

被引:0
|
作者
Becker, Roland [1 ,2 ,3 ]
Capatina, Daniela [1 ,2 ,3 ]
机构
[1] INRIA Bordeaux Sud Ouest, EPI Concha, BP 1155, F-64013 Pau, France
[2] INRIA Bordeaux Sud Ouest, LMA CNRS UMR 5142, F-64013 Pau, France
[3] Univ Pau, IPRA, F-64013 Pau, France
来源
NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009 | 2010年
关键词
TENSOR;
D O I
10.1007/978-3-642-11795-4_13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Giesekus model for steady flows of polymeric liquids. This model, characterized by the presence in the constitutive law of a quadratic term in the stress tensor, yields a realistic behavior for shear, elongational and mixed flows. Its numerical approximation is achieved by means of Crouzeix-Raviart non-conforming finite elements for the velocity and the pressure, respectively piecewise constant elements for the stress tensor. Appropriate upwind schemes are employed for the convective terms, and the nonlinear discrete problem is solved by Newton's method. We next investigate the positive definiteness of the discrete conformation tensor and show that under certain hypotheses, this property is preserved by Newton's method. This allows us to attain the convergence of the algorithm for rather large Weissenberg numbers. Numerical tests validating the code are presented.
引用
收藏
页码:135 / 143
页数:9
相关论文
共 50 条
  • [1] Nonconforming finite element approximation of the Giesekus model for polymer flows
    Becker, R.
    Capatina, A.
    Graebling, D.
    Joie, J.
    COMPUTERS & FLUIDS, 2011, 46 (01) : 142 - 147
  • [2] Finite element discretization tools for gas-liquid flows
    Kuzmin, D
    Turek, S
    BUBBLY FLOWS: ANALYSIS, MODELLING AND CALCULATION, 2004, : 191 - 201
  • [3] On discretization error estimates for finite element model updating
    Mottershead, JE
    Friswell, MI
    Zhang, Y
    MODAL ANALYSIS-THE INTERNATIONAL JOURNAL OF ANALYTICAL AND EXPERIMENTAL MODAL ANALYSIS, 1996, 11 (3-4): : 155 - 164
  • [4] FINITE-ELEMENT SIMULATION OF POLYMER PROCESSING FLOWS
    CASWELL, B
    VIRIYAYUTHAKORN, M
    JOURNAL OF RHEOLOGY, 1978, 22 (04) : 445 - 445
  • [5] FINITE-ELEMENT MODELING OF POLYMER MELT FLOWS
    ROYLANCE, D
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1981, 182 (AUG): : 79 - &
  • [6] A finite element discretization method for option pricing with the Bates model
    Miglio E.
    Sgarra C.
    SeMA Journal, 2011, 55 (1): : 23 - 40
  • [7] ON THE TREATMENT OF DISCRETIZATION ERRORS IN FINITE-ELEMENT MODEL UPDATING
    MOTTERSHEAD, JE
    GOH, EL
    SHAO, W
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1995, 9 (01) : 101 - 112
  • [8] A posteriori analysis of a finite element discretization of a Naghdi shell model
    Bernardi, Christine
    Hecht, Frederic
    Le Dret, Herve
    Blouza, Adel
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) : 190 - 211
  • [9] Mortar finite element discretization of a model coupling Darcy and Stokes equations
    Bernardi, Christine
    Rebollo, Tomas Chacon
    Hecht, Frederic
    Mghazli, Zoubida
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (03): : 375 - 410
  • [10] ERROR ESTIMATES FOR A FINITE ELEMENT DISCRETIZATION OF A PHASE FIELD MODEL FOR MIXTURES
    Eck, Ch.
    Jadamba, B.
    Knabner, P.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) : 4429 - 4445