Automated systematic evaluation of cryo-EM specimens with SmartScope

被引:28
作者
Bouvette, Jonathan [1 ]
Huang, Qinwen [2 ]
Riccio, Amanda A. [1 ]
Copeland, William C. [1 ]
Bartesaghi, Alberto [2 ,3 ,4 ]
Borgnia, Mario J. [1 ]
机构
[1] NIEHS, Genome Integr & Struct Biol Lab, POB 12233, Res Triangle Pk, NC 27709 USA
[2] Duke Univ, Dept Comp Sci, Durham, NC 27706 USA
[3] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[4] Duke Univ, Dept Biochem, Sch Med, Durham, NC 27708 USA
关键词
cryo-electron microscopy; automation; machine learning; deep learning; object recognition; software platform; Human; VISUALIZATION;
D O I
10.7554/eLife.80047
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Finding the conditions to stabilize a macromolecular target for imaging remains the most critical barrier to determining its structure by cryo-electron microscopy (cryo-EM). While automation has significantly increased the speed of data collection, specimens are still screened manually, a laborious and subjective task that often determines the success of a project. Here, we present SmartScope, the first framework to streamline, standardize, and automate specimen evaluation in cryo-EM. SmartScope employs deep-learning-based object detection to identify and classify features suitable for imaging, allowing it to perform thorough specimen screening in a fully automated manner. A web interface provides remote control over the automated operation of the microscope in real time and access to images and annotation tools. Manual annotations can be used to re-train the feature recognition models, leading to improvements in performance. Our automated tool for systematic evaluation of specimens streamlines structure determination and lowers the barrier of adoption for cryo-EM.
引用
收藏
页数:18
相关论文
共 29 条
[1]  
Bouvette J., 2022, SMARTSCOPEAI SWH 1 R
[2]   High resolution single particle cryo-electron microscopy using beam-image shift [J].
Cheng, Anchi ;
Eng, Edward T. ;
Alink, Lambertus ;
Rice, William J. ;
Jordan, Kelsey D. ;
Kim, Laura Y. ;
Potter, Clinton S. ;
Carragher, Bridget .
JOURNAL OF STRUCTURAL BIOLOGY, 2018, 204 (02) :270-275
[3]   A novel processive mechanism for DNA synthesis revealed by structure, modeling and mutagenesis of the accessory subunit of human mitochondrial DNA polymerase [J].
Fan, Li ;
Kim, Sangbumn ;
Farr, Carol L. ;
Schaefer, Kevin T. ;
Randolph, Kathleen M. ;
Tainer, John A. ;
Kaguni, Laurie S. .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 358 (05) :1229-1243
[4]  
Fan Q., 2022, CryoRL: Reinforcement Learning Enables Efficient Cryo-EM Data Collection
[5]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[6]  
Hong Xu, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12265), P56, DOI 10.1007/978-3-030-59722-1_6
[7]  
Jocher G., 2020, YOLOV5 ULTRALYTICS
[8]  
Kim PT, 2021, ARXIV
[9]   Computer visualization of three-dimensional image data using IMOD [J].
Kremer, JR ;
Mastronarde, DN ;
McIntosh, JR .
JOURNAL OF STRUCTURAL BIOLOGY, 1996, 116 (01) :71-76
[10]   Appion: An integrated, database-driven pipeline to facilitate EM image processing [J].
Lander, Gabriel C. ;
Stagg, Scott M. ;
Voss, Neil R. ;
Cheng, Anchi ;
Fellmann, Denis ;
Pulokas, James ;
Yoshioka, Craig ;
Irving, Christopher ;
Mulder, Anke ;
Lau, Pick-Wei ;
Lyumkis, Dmitry ;
Potter, Clinton S. ;
Carragher, Bridget .
JOURNAL OF STRUCTURAL BIOLOGY, 2009, 166 (01) :95-102