Fourier reconstruction of functions from their nonstandard sampled Radon transform

被引:13
作者
Potts, D [1 ]
Steidl, G
机构
[1] Med Univ Lubeck, Inst Math, D-23560 Lubeck, Germany
[2] Univ Mannheim, Inst Comp Sci, D-68131 Mannheim, Germany
关键词
fast Fourier transform for nonequispaced data; Radon transform; computerized tomography; gridding; interlaced grid; nonstandard sampling; aliasing error;
D O I
10.1007/s00041-002-0025-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we suggest a new Fourier transform based algorithm for the reconstruction of functions front their nonstandard sampled Radon transform. The algorithm incorporates recently developed fast Fourier transforms for nonequispaced data. We estimate the corresponding abasing error in dependence on the sampling geometry of the Radon transform and confirm car theoretical results by numerical examples.
引用
收藏
页码:513 / 533
页数:21
相关论文
共 33 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1966, SYSTEM ANAL DIGITAL
[3]  
[Anonymous], 2001, SIAM monographs on mathematical modeling and computation
[4]   ON THE FAST FOURIER-TRANSFORM OF FUNCTIONS WITH SINGULARITIES [J].
BEYLKIN, G .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (04) :363-381
[5]  
Bracewell R. N., 1956, Aust. J. Phys, V9, P198, DOI [10.1071/PH560198, DOI 10.1071/PH560198]
[6]   SAMPLING RADON TRANSFORM WITH BEAMS OF FINITE WIDTH [J].
CORMACK, AM .
PHYSICS IN MEDICINE AND BIOLOGY, 1978, 23 (06) :1141-1148
[7]   Nonuniform fast Fourier transform [J].
Duijndam, AJW ;
Schonewille, MA .
GEOPHYSICS, 1999, 64 (02) :539-551
[8]   FAST FOURIER-TRANSFORMS FOR NONEQUISPACED DATA [J].
DUTT, A ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (06) :1368-1393
[9]   LINOGRAMS IN IMAGE-RECONSTRUCTION FROM PROJECTIONS [J].
EDHOLM, PR ;
HERMAN, GT .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1987, 6 (04) :301-307
[10]  
ELBEL B, 1998, THESIS TU DARMSTADT