The Norm and Modulus of a Foguel Operator

被引:13
作者
Garcia, Stephan Ramon [1 ]
机构
[1] Pomona Coll, Dept Math, Claremont, CA 91711 USA
基金
美国国家科学基金会;
关键词
Complex symmetric operator; Foguel operator; Hankel operator; Foguel-Hankel operator; power bounded operator; polynomially bounded operator; similarity; contraction; Golden Ratio; conjugation; COMPLEX SYMMETRIC-OPERATORS;
D O I
10.1512/iumj.2009.58.3735
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a method for calculating the norm and the spectrum of the modulus of a Foguel operator. In many cases, the norm can be computed exactly. In others, sharp upper bounds are obtained. In particular, we observe several connections between Foguel operators and the Golden Ratio.
引用
收藏
页码:2305 / 2315
页数:11
相关论文
共 19 条
[1]  
[Anonymous], INT MATH RES NOTICES
[2]   ON THE SIMILARITY PROBLEM FOR POLYNOMIALLY BOUNDED OPERATORS ON HILBERT-SPACE [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1986, 54 (02) :227-241
[3]   The characteristic function of a complex symmetric contraction [J].
Chevrot, Nicolas ;
Fricain, Emmanuel ;
Timotin, Dan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) :2877-2886
[4]  
Conway J B., 1990, COURSE FUNCTIONAL AN
[5]  
Garcia SR, 2006, CONTEMP MATH, V393, P67
[6]   Complex symmetric operators and applications [J].
Garcia, SR ;
Putinar, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (03) :1285-1315
[7]   Approximate antilinear eigenvalue problems and related inequalities [J].
Garcia, Stephan Ramon .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (01) :171-179
[8]   Means of unitaries, conjugations, and the Friedrichs operator [J].
Garcia, Stephan Ramon .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) :941-947
[9]   Complex symmetric operators and applications II [J].
Garcia, Stephan Ramon ;
Putinar, Mihai .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (08) :3913-3931
[10]   Remarks on the structure of complex symmetric operators [J].
Gilbreath, T. M. ;
Wogen, Warren R. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 59 (04) :585-590