Ag@SiO2 Core-Shell Nanoparticles for Probing Spatial Distribution of Electromagnetic Field Enhancement via Surface-Enhanced Raman Scattering

被引:122
作者
Wang, Wei [1 ]
Li, Zhipeng [3 ]
Gu, Baohua [1 ]
Zhang, Zhenyu [2 ,4 ]
Xu, Hongxing [3 ,5 ]
机构
[1] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[3] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[4] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[5] Lund Univ, Div Solid State Phys, S-22100 Lund, Sweden
基金
中国国家自然科学基金;
关键词
Raman scattering; nanoparticles; silver; silica; spatial distribution; electromagnetic field enhancement; SINGLE-MOLECULE; DISTANCE DEPENDENCE; RHODAMINE; 6G; SILICA; SERS; SPECTROSCOPY; ADSORPTION; MONOLAYERS; FILMS; TOOL;
D O I
10.1021/nn9009533
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We show that the spatial distribution of the electromagnetic (EM) field enhancement can be probed directly via dynamic evolution of surface-enhanced Raman scattering (SERS) of rhodamine 6G (R6G) molecules as they diffuse into Ag@SiO2 core-shell nanoparticles. The porous silica shell limits the diffusion of R6G molecules toward Inner Ag cores, thereby allowing direct observation and quantification of the spatial distribution of SERS enhancement as molecules migrate from the low to high EM fields inside the dielectric silica shell. Our experimental evidence is validated by the generalized Mie theory, and the approach can potentially offer a novel platform for further investigating the site and spatial distribution of the EM fields and the EM versus chemical enhancement of SERS due to molecular confinement within the Ag@SiO2 nanoshell.
引用
收藏
页码:3493 / 3496
页数:4
相关论文
共 29 条
[1]   Plasmon hybridization in nanoshell dimers [J].
Brandl, DW ;
Oubre, C ;
Nordlander, P .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (02)
[2]  
Crank J., 1979, The mathematics of diffusion
[3]   Measurement of the distribution of site enhancements in surface-enhanced Raman scattering [J].
Fang, Ying ;
Seong, Nak-Hyun ;
Dlott, Dana D. .
SCIENCE, 2008, 321 (5887) :388-392
[4]   Formation of silica nanoparticles in microemulsions [J].
Finnie, Kim S. ;
Bartlett, John R. ;
Barbe, Christophe J. A. ;
Kong, Linggen .
LANGMUIR, 2007, 23 (06) :3017-3024
[5]   Control of molecular transport through stimuli-responsive ordered mesoporous materials [J].
Fu, Q ;
Rao, GVR ;
Ista, LK ;
Wu, Y ;
Andrzejewski, BP ;
Sklar, LA ;
Ward, TL ;
López, GP .
ADVANCED MATERIALS, 2003, 15 (15) :1262-+
[6]   Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering [J].
Gunnarsson, L ;
Bjerneld, EJ ;
Xu, H ;
Petronis, S ;
Kasemo, B ;
Käll, M .
APPLIED PHYSICS LETTERS, 2001, 78 (06) :802-804
[7]   Dynamics of molecular diffusion of rhodamine 6G in silica nanochannels [J].
Kievsky, Y. Y. ;
Carey, B. ;
Naik, S. ;
Mangan, N. ;
ben-Avraham, D. ;
Sokolov, I. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (15)
[8]   SERS - a single-molecule and nanoscale tool for bioanalytics [J].
Kneipp, Janina ;
Kneipp, Harald ;
Kneipp, Katrin .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (05) :1052-1060
[9]   Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering [J].
Kneipp, K ;
Wang, Y ;
Kneipp, H ;
Itzkan, I ;
Dasari, RR ;
Feld, MS .
PHYSICAL REVIEW LETTERS, 1996, 76 (14) :2444-2447
[10]   Colloidal suspensions of functionalized mesoporous silica nanoparticles [J].
Kobler, Johannes ;
Moeller, Karin ;
Bein, Thomas .
ACS NANO, 2008, 2 (04) :791-799