Existence results for a class of Kirchhoff type systems with Caffarelli-Kohn-Nirenberg exponents

被引:3
作者
Afrouzi, G. A. [1 ]
Zahmatkesh, H. [1 ]
Shakeri, S. [2 ]
机构
[1] Univ Mazandaran, Dept Math, Fac Math Sci, Babol Sar, Iran
[2] Islamic Azad Univ, Dept Math, Ayatollah Amoli Branch, Amol, Iran
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2016年 / 24卷 / 01期
关键词
Nonlocal problems; Singular weights; infinite semipositone systems; Sub and supersolutions method; POSITIVE SOLUTIONS; P-LAPLACIAN;
D O I
10.1515/auom-2016-0004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence of positive solutions for a class of infinite semipositone kirchhoff type systems with singular weights. Our aim is to establish the existence of positive solution for A large enough. The arguments rely on the method of sub -and super solutions.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 21 条
[11]   On the sub-supersolution method for p(x)-Kirchhoff type equations [J].
Han, Xiaoling ;
Dai, Guowei .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
[12]  
Lee E.K., 2009, P ROY SOC EDINBURG A, P853
[13]  
Lee EK, 2011, DIFFER INTEGRAL EQU, V24, P361
[14]   On positive solutions for a class of singular quasilinear elliptic systems [J].
Miyagaki, O. H. ;
Rodrigues, R. S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) :818-833
[15]  
Nagumo M., 1937, Proc. Phys.Math. Soc. Japan, V19, P861, DOI 10.11429/ppmsj1919.19.0861
[16]  
Poincare A., 1898, J. Math. Pures Appl. T, V4, P137
[17]  
Ramaswamy M, 2007, DIFFER INTEGRAL EQU, V20, P1423
[18]  
Rasouli SH, 2013, THAI J MATH, V11, P103
[19]   The Nehari manifold for a class of concave-convex elliptic systems involving the p-Laplacian and nonlinear boundary condition [J].
Rasouli, S. H. ;
Afrouzi, G. A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) :3390-3401
[20]   The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights [J].
Xuan, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (04) :703-725