A sufficient condition in order that the real Jacobian conjecture in R2 holds

被引:13
作者
Braun, Francisco [1 ]
Gine, Jaume [2 ]
Llibre, Jaume [3 ]
机构
[1] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Paulo, Brazil
[2] Univ Lleida, Dept Matemat, Lleida, Catalonia, Spain
[3] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Catalonia, Spain
基金
巴西圣保罗研究基金会;
关键词
Real Jacobian conjecture; Global injectivity; Centre; INJECTIVITY;
D O I
10.1016/j.jde.2015.12.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F = (f,g):R-2 -> R-2 be a polynomial map such that detDF(x, y) is different from zero for all (x, y) epsilon R-2 and F(0, 0) = (0, 0). We prove that for the injectivity of F it is sufficient to assume that the higher homogeneous terms of the polynomials ff(x) + gg(x) and ff(y) + gg(y) do not have real linear factors in common. The proofs are based on qualitative theory of dynamical systems. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:5250 / 5258
页数:9
相关论文
共 14 条
[1]   THE JACOBIAN CONJECTURE - REDUCTION OF DEGREE AND FORMAL EXPANSION OF THE INVERSE [J].
BASS, H ;
CONNELL, EH ;
WRIGHT, D .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (02) :287-330
[2]  
Braun F., ARXIV14067683MATHDS
[3]  
Braun F, 2015, AN ACAD BRAS CIENC, V87, P1519
[4]   THE REAL JACOBIAN CONJECTURE ON R2 IS TRUE WHEN ONE OF THE COMPONENTS HAS DEGREE 3 [J].
Braun, Francisco ;
dos Santos Filho, Jose Ruidival .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (01) :75-87
[5]   ON POLYNOMIAL HAMILTONIAN PLANAR VECTOR-FIELDS [J].
CIMA, A ;
GASULL, A ;
MANOSAS, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 106 (02) :367-383
[6]   Injectivity of polynomial local homeomorphisms of R(n) [J].
Cima, A ;
Gasull, A ;
Manosas, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (04) :877-885
[7]  
Cima A., 1995, AUTOMORPHISMS AFFINE, P105
[8]   On the injectivity of C1 maps of the real plane [J].
Cobo, M ;
Gutierrez, C ;
Llibre, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (06) :1187-1201
[9]  
Dumortier F, 2006, UNIVERSITEXT, P1
[10]   Global asymptotic stability for differentiable vector fields of R2 [J].
Fernandes, A ;
Gutierrez, C ;
Rabanal, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 206 (02) :470-482