Differential biodistribution of adenoviral vector in vivo as monitored by bioluminescence imaging and quantitative polymerase chain reaction

被引:50
作者
Johnson, Mai
Huyn, Steve
Burton, Jeremy
Sato, Makoto
Wu, Lily
机构
[1] Univ Calif Los Angeles, Dept Urol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Mol Cellular & Integrat Physiol, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA
关键词
D O I
10.1089/hum.2006.17.1262
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A better understanding of the in vivo biodistribution of adenoviral vectors would enable the researcher to anticipate potential side effects due to off-targeted site of transduction, and aid in the strategic design of gene therapy. We combined real-time polymerase chain reaction with in vivo optical imaging to examine viral transduction in liver, lung, spleen, kidney, prostate, and lymph nodes. A replication-deficient serotype 5 adenoviral vector expressing the firefly luciferase gene under the control of a constitutive cytomegalovirus promoter was administered in vivo via different routes. Intravenous and intraperitoneal injections resulted in greatest gene expression and viral DNA in the liver, whereas intraperitoneal injections led to a greater extent of gene delivery to the prostate. Although prostate-directed injection resulted in dominant gene expression in the targeted site, leakage of the vector to other organs was also observed. Vector injection into the lymphatic-rich paw tissue or the subcutaneous tissue of shoulder or chest followed the expected lymphatic drainage pattern, resulting in the accumulation of viral vector in ipsilateral brachial and axillary lymph nodes. Collectively, this study demonstrates that each tissue retains various amounts of adenoviral vector, depending on the route of administration. This knowledge is useful in the strategic design and implementation of adenovirus-mediated gene therapies.
引用
收藏
页码:1262 / 1269
页数:8
相关论文
共 40 条
[1]   Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging [J].
Adams, JY ;
Johnson, M ;
Sato, M ;
Berger, F ;
Gambhir, SS ;
Carey, M ;
Iruela-Arispe, ML ;
Wu, L .
NATURE MEDICINE, 2002, 8 (08) :891-896
[2]   Evaluation of viral and mammalian promoters for driving transgene expression in mouse liver [J].
Al-Dosari, M ;
Zhang, GS ;
Knapp, JE ;
Liu, DX .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 339 (02) :673-678
[3]   Blood clearance rates of adenovirus type 5 in mice [J].
Alemany, R ;
Suzuki, K ;
Curiel, DT .
JOURNAL OF GENERAL VIROLOGY, 2000, 81 :2605-2609
[4]   CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors [J].
Alemany, R ;
Curiel, DT .
GENE THERAPY, 2001, 8 (17) :1347-1353
[5]   Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5 [J].
Bergelson, JM ;
Cunningham, JA ;
Droguett, G ;
KurtJones, EA ;
Krithivas, A ;
Hong, JS ;
Horwitz, MS ;
Crowell, RL ;
Finberg, RW .
SCIENCE, 1997, 275 (5304) :1320-1323
[6]   The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses [J].
Bergelson, JM ;
Krithivas, A ;
Celi, L ;
Droguett, G ;
Horwitz, MS ;
Wickham, T ;
Crowell, RL ;
Finberg, RW .
JOURNAL OF VIROLOGY, 1998, 72 (01) :415-419
[7]   The effect of sequestration by nontarget tissues on anti-tumor efficacy of systemically applied, conditionally replicating adenovirus vectors [J].
Bernt, KM ;
Ni, SH ;
Li, ZY ;
Shayakhmetov, DM ;
Lieber, A .
MOLECULAR THERAPY, 2003, 8 (05) :746-755
[8]   A VERY STRONG ENHANCER IS LOCATED UPSTREAM OF AN IMMEDIATE EARLY GENE OF HUMAN CYTOMEGALO-VIRUS [J].
BOSHART, M ;
WEBER, F ;
JAHN, G ;
DORSCHHASLER, K ;
FLECKENSTEIN, B ;
SCHAFFNER, W .
CELL, 1985, 41 (02) :521-530
[9]   Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli [J].
Chartier, C ;
Degryse, E ;
Gantzer, M ;
Dieterle, A ;
Pavirani, A ;
Mehtali, M .
JOURNAL OF VIROLOGY, 1996, 70 (07) :4805-4810
[10]  
Croyle M A, 1998, Pharm Dev Technol, V3, P373, DOI 10.3109/10837459809009865