A thermo-fluid/electrochemical model for micro-SOFC

被引:0
作者
Ji, Yan [1 ]
Chung, J. N. [1 ]
Yuan, Kun [1 ]
机构
[1] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA
来源
Proceedings of the ASME Advanced Energy Systems Division | 2005年 / 45卷
关键词
solid oxide fuel cell; heat transfer; three-dimensional modeling;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, a three dimensional thermo-fluid/electrochemical model is proposed to simulate the heat and mass transfer phenomena in a micro-geometry co-flow solid oxide fuel cell. Governing equation of mass, momentum and energy conservation are simultaneously solved. A network circuit is applied to simulate the electrical potential, ohmic losses and activation polarization. Cyclic boundary conditions are imposed at the top and bottom of the model domains, while the lateral walls were assumed adiabatic and insulation. A parametric study examines the effect of micro-channel on the temperature field, concentration field, local current density and power density. Results demonstrate that microchannels can reduce temperature or concentration difference between reaction locations and stream. The local current density is much more uniform and output voltage is also improved. Numerical simulation will be expected to help optimize the design of a micro solid oxide fuel cell.
引用
收藏
页码:341 / 348
页数:8
相关论文
共 18 条
[1]   THERMAL-HYDRAULIC MODEL OF A MONOLITHIC SOLID OXIDE FUEL-CELL [J].
AHMED, S ;
MCPHEETERS, C ;
KUMAR, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (09) :2712-2718
[2]   A MATHEMATICAL-MODEL OF A SOLID OXIDE FUEL-CELL [J].
BESSETTE, NF ;
WEPFER, WJ ;
WINNICK, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (11) :3792-3800
[3]   Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry [J].
Campanari, S ;
Iora, P .
JOURNAL OF POWER SOURCES, 2004, 132 (1-2) :113-126
[4]   A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness [J].
Chan, SH ;
Khor, KA ;
Xia, ZT .
JOURNAL OF POWER SOURCES, 2001, 93 (1-2) :130-140
[5]   Three-dimensional numerical simulation for various geometries of solid oxide fuel cells [J].
Ferguson, JR ;
Fiard, JM ;
Herbin, R .
JOURNAL OF POWER SOURCES, 1996, 58 (02) :109-122
[6]   Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell [J].
Haberman, BA ;
Young, JB .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (17-18) :3617-3629
[7]   'Design for power' of a commercial grade tubular solid oxide fuel cell [J].
Haynes, C ;
Wepfer, WJ .
ENERGY CONVERSION AND MANAGEMENT, 2000, 41 (11) :1123-1139
[8]   EVALUATION OF A NEW SOLID OXIDE FUEL-CELL SYSTEM BY NONISOTHERMAL MODELING [J].
HIRANO, A ;
SUZUKI, M ;
IPPOMMATSU, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (10) :2744-2751
[9]   Performance analysis of planar-type unit SOFC considering current and temperature distributions [J].
Iwata, M ;
Hikosaka, T ;
Morita, M ;
Iwanari, T ;
Ito, K ;
Onda, K ;
Esaki, Y ;
Sakaki, Y ;
Nagata, S .
SOLID STATE IONICS, 2000, 132 (3-4) :297-308
[10]   Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells [J].
Kim, JW ;
Virkar, AV ;
Fung, KZ ;
Mehta, K ;
Singhal, SC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (01) :69-78