On scatteredly continuous maps between topological spaces

被引:17
作者
Banakh, Taras [1 ,2 ]
Bokalo, Bogdan [1 ]
机构
[1] Ivan Franko Natl Univ Lviv, Dept Math, Lvov, Ukraine
[2] Akad Swietokrzyska, Inst Matemat, Kielce, Poland
关键词
Scatteredly continuous map; Weakly discontinuous map; Piecewise continuous map; G(delta)-measurable map; Preiss-Simon space;
D O I
10.1016/j.topol.2009.04.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A map f : X --> Y between topological spaces is defined to be scatteredly continuous if for each subspace A subset of X the restriction f|A has a point of continuity. We show that for a function f : X --> Y from a perfectly paracompact hereditarily Baire Preiss-Simon space X into a regular space Y the scattered continuity of f is equivalent to (i) the weak discontinuity (for each subset A subset of X the set D(f|A) of discontinuity points of f|A is nowhere dense in A), (ii) the piecewise continuity (X can be written as a countable union of closed subsets on which f is continuous), (iii) the G(delta)-measurability (the preimage of each open set is of type G(delta)). Also under Martin Axiom, we construct a G(delta)-measurable map f : X Y between metrizable separable spaces, which is not piecewise continuous. This answers an old question of V. Vinokurov. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 122
页数:15
相关论文
共 27 条
  • [1] ARKHANGELSKII AV, 1993, T MOSCOW MATH SOC, V54, P139
  • [2] Baire R., 1899, Annali di Mat, V3, P1, DOI [10.1007/BF02419243, DOI 10.1007/BF02419243]
  • [3] Banakh T., 2004, UKR MATH J, V56, P1443
  • [4] Bartoszynski T., 1995, SET THEORY STRUCTURE
  • [5] BLASS A, 2008, HDB SET THEORY
  • [6] Bokalo B., 1995, MATEM STUDII, V9, P90
  • [7] BORGES CJR, 1966, PAC J MATH, V17, P1
  • [8] Chaatit F., 2000, QUAEST MATH, V23, P295
  • [9] DECOMPOSING BAIRE FUNCTIONS
    CICHON, J
    MORAYNE, M
    PAWLIKOWSKI, J
    SOLECKI, S
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1991, 56 (04) : 1273 - 1283
  • [10] SOME REMARKS ON DISCRETE BAIRE CLASSES
    CSASZAR, A
    LACZKOVICH, M
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1979, 33 (1-2): : 51 - 70