Maximal smoothness for solutions to equilibrium equations in 2D nonlinear elasticity

被引:7
作者
Yan, Xiaodong [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
equilibrium equations; weak solution; maximal smoothness;
D O I
10.1090/S0002-9939-06-08645-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a class of variational integrals from 2D nonlinear elasticity, we prove that any W-2,W-2 boolean AND C(1)weak solution for the equilibrium equations is smooth. Moreover, we present an example showing that the assumption u is an element of W-2,W-2 is optimal.
引用
收藏
页码:1717 / 1724
页数:8
相关论文
共 8 条
[1]  
Adams R. A., 2003, PURE APPL MATH, V140
[2]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[3]   MAXIMAL SMOOTHNESS OF SOLUTIONS TO CERTAIN EULER-LAGRANGE EQUATIONS FROM NONLINEAR ELASTICITY [J].
BAUMAN, P ;
PHILLIPS, D ;
OWEN, NC .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1991, 119 :241-263
[4]   MAXIMUM-PRINCIPLES AND A PRIORI ESTIMATES FOR A CLASS OF PROBLEMS FROM NONLINEAR ELASTICITY [J].
BAUMAN, P ;
OWEN, NC ;
PHILLIPS, D .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (02) :119-157
[5]  
BEVAN J, IN PRESS ESAIM CONTR
[6]  
COIFMAN R, 1993, J MATH PURE APPL, V72, P247
[7]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215
[8]   LARGE DEFORMATION ISOTROPIC ELASTICITY - CORRELATION OF THEORY AND EXPERIMENT FOR COMPRESSIBLE RUBBERLIKE SOLIDS [J].
OGDEN, RW .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 328 (1575) :567-&