Novel diterpenoid-type activators of the Keap1/Nrf2/ARE signaling pathway and their regulation of redox homeostasis

被引:24
|
作者
Li, Ai-Ling [1 ]
Shen, Tao [1 ]
Wan, Tian [1 ]
Zhou, Ming-Xing [1 ]
Wang, Bin [1 ]
Song, Jin-Tong [1 ]
Zhang, Peng-Liang [1 ]
Wang, Xiao-Ling [2 ]
Ren, Dong-Mei [1 ]
Lou, Hong-Xiang [1 ]
Wang, Xiao-Ning [1 ]
机构
[1] Shandong Univ, Sch Pharmaceut Sci, Key Lab Chem Biol MOE, 44 Wenhua Xi Rd, Jinan 250012, Shandong, Peoples R China
[2] Shandong Univ, Hosp 2, 247 Bei Yuan St, Jinan 250033, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Diterpenoid; Nrf2; Oxidative stress; Sphaeropsidin A; PROTEIN-PROTEIN INTERACTION; HEME OXYGENASE-1 EXPRESSION; OXIDATIVE STRESS; PEPTIDE INHIBITORS; NRF2; LUNG; PHOSPHORYLATION; CARCINOGENESIS; MECHANISMS; TOXICITY;
D O I
10.1016/j.freeradbiomed.2019.06.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oxidative stress is involved in the onset and progression of many human diseases. Activators of the Keap1/Nrf2/ARE pathway effectively inhibit the progression of oxidative stress-induced diseases. Herein, a small library of diterpenoids was established by means of phytochemical isolation, and chemical modification on naturally occurring molecules. The diterpenoids were subjected to a NAD(P)H: quinone reductase (QR) assay to evaluate its potential inhibition against oxidative stress. Sixteen diterpenoids were found to be novel potential activators of Nrf2-mediated defensive response. Of which, an isopimarane-type diterpenoid, sphaeropsidin A (SA), was identified as a potent activator of the Keap1/Nrf2/ARE pathway, and displayed approximately 5-folds potency than that of sulforaphane (SF). SA activated Nrf2 and its downstream cytoprotective genes through enhancing the stabilization of Nrf2 in a process involving PI3K, PKC, and PERK, as well as potentially interrupting Nrf2-Keap1 protein-protein interaction. In addition, SA conferred protection against sodium arsenite [As(III)]- and cigarette smoke extract (CSE)-induced redox imbalance and cytotoxicity in human lung epithelial cells, as wells as inhibited metronidazole (MTZ)-induced oxidative insult in Tg (krt4: NTR-hKikGR)(cy17) transgenic zebrafish and lipopolysaccharide (LPS)-induced oxidative damage in wild-type AB zebrafish. These results imply that SA is a lead compound for therapeutic agent against oxidative stress-induced diseases, and diterpenoid is a good resource for discovering drug candidates and leads of antioxidant therapy.
引用
收藏
页码:21 / 33
页数:13
相关论文
共 50 条
  • [41] Non-electrophilic modulators of the canonical Keap1/Nrf2 pathway
    Richardson, B. G.
    Jain, A. D.
    Speltz, T. E.
    Moore, T. W.
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2015, 25 (11) : 2261 - 2268
  • [42] The role of the Nrf2/Keap1 signaling cascade in mechanobiology and bone health
    Priddy, Carlie
    Li, Jiliang
    BONE REPORTS, 2021, 15
  • [43] Nestin is essential for cellular redox homeostasis and gastric cancer metastasis through the mediation of the Keap1–Nrf2 axis
    Jing Lv
    Meiqiang Xie
    Shufen Zhao
    Wensheng Qiu
    Shasha Wang
    Manming Cao
    Cancer Cell International, 21
  • [44] Keap1/Nrf2/ARE redox-sensitive signaling system as a pharmacological target
    N. K. Zenkov
    E. B. Menshchikova
    V. O. Tkachev
    Biochemistry (Moscow), 2013, 78 : 19 - 36
  • [45] Dietary Regulation of Keap1/Nrf2/ARE Pathway: Focus on Plant-Derived Compounds and Trace Minerals
    Stefanson, Amanda L.
    Bakovic, Marica
    NUTRIENTS, 2014, 6 (09) : 3777 - 3801
  • [46] Inhibition of the Keap1/Nrf2 Signaling Pathway Significantly Promotes the Progression of Type 1 Diabetes Mellitus
    Lou, Yanmei
    Kong, Muyan
    Li, Leyan
    Hu, Yu
    Zhai, Wenjun
    Qi, Xiaoxiao
    Liu, Zhongqiu
    Wu, Jinjun
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2021, 2021
  • [47] Metal profiling in coronary ischemia-reperfusion injury: Implications for KEAP1/NRF2 regulated redox signaling
    Yang, Fan
    Smith, Matthew J.
    FREE RADICAL BIOLOGY AND MEDICINE, 2024, 210 : 158 - 171
  • [48] Epigenetic Therapeutics Targeting NRF2/KEAP1 Signaling in Cancer Oxidative Stress
    Zhang, Shunhao
    Duan, Sining
    Xie, Zhuojun
    Bao, Wanlin
    Xu, Bo
    Yang, Wenbin
    Zhou, Lingyun
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [49] Modulation of NRF2/KEAP1 Signaling by Phytotherapeutics in Periodontitis
    Tossetta, Giovanni
    Fantone, Sonia
    Togni, Lucrezia
    Santarelli, Andrea
    Olivieri, Fabiola
    Marzioni, Daniela
    Rippo, Maria Rita
    ANTIOXIDANTS, 2024, 13 (10)
  • [50] Natural and synthetic compounds in Ovarian Cancer: A focus on NRF2/KEAP1 pathway
    Tossetta, Giovanni
    Marzioni, Daniela
    PHARMACOLOGICAL RESEARCH, 2022, 183