共 10 条
Transcriptional supercoiling boosts topoisomerase II-mediated knotting of intracellular DNA
被引:19
|作者:
Valdes, Antonio
[1
]
Coronel, Lucia
[2
]
Martinez-Garcia, Belen
[1
]
Segura, Joana
[1
]
Dyson, Silvia
[1
]
Diaz-Ingelmo, Ofelia
[1
]
Micheletti, Cristian
[2
]
Roca, Joaquim
[1
]
机构:
[1] CSIC, Mol Biol Inst Barcelona IBMB, Barcelona 08028, Spain
[2] Scuola Int Super Studi Avanzati, I-34136 Trieste, Italy
关键词:
TORSIONAL STRESS;
POL II;
CHROMATIN;
INHIBITION;
TOPOLOGY;
MODEL;
OCCUR;
KNOTS;
SITES;
TOP2;
D O I:
10.1093/nar/gkz491
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Recent studies have revealed that the DNA cross-inversion mechanism of topoisomerase II (topo II) not only removes DNA supercoils and DNA replication intertwines, but also produces small amounts of DNA knots within the clusters of nucleosomes that conform to eukaryotic chromatin. Here, we examine how transcriptional supercoiling of intracellular DNA affects the occurrence of these knots. We show that although (-) supercoiling does not change the basal DNA knotting probability, (+) supercoiling of DNA generated in front of the transcribing complexes increases DNA knot formation over 25-fold. The increase of topo II-mediated DNA knotting occurs both upon accumulation of (+) supercoiling in topoisomerase-deficient cells and during normal transcriptional supercoiling of DNA in TOP1 TOP2 cells. We also show that the high knotting probability ( P-kn >= 0.5) of (+) supercoiled DNA reflects a 5-fold volume compaction of the nucleosomal fibers in vivo. Our findings indicate that topo II-mediated DNA knotting could be inherent to transcriptional supercoiling of DNA and other chromatin condensation processes and establish, therefore, a new crucial role of topoisomerase II in resetting the knotting-unknotting homeostasis of DNA during chromatin dynamics.
引用
收藏
页码:6946 / 6955
页数:10
相关论文