Shape optimization in viscous compressible fluids

被引:20
作者
Feireisl, E [1 ]
机构
[1] AV CR, Math Inst, Prague 11567 1, Czech Republic
关键词
optimal shape design; compressible flow; Navier-Stokes equations;
D O I
10.1007/s00245-002-0737-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method for solving the optimal shape problems for profiles surrounded by viscous compressible fluids. The class of admissible profiles is quite general including the minimal volume condition and a constraint on the thickness of the boundary. The fluid flow is modelled by the Navier-Stokes system for a general viscous barotropic fluid.
引用
收藏
页码:59 / 78
页数:20
相关论文
共 20 条
[1]  
[Anonymous], LECT NOTES MATH
[2]   Free boundary problems and density perimeter [J].
Bucur, D ;
Zolesio, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 126 (02) :224-243
[3]   N-dimensional shape optimization under capacitary constraint [J].
Bucur, D ;
Zolesio, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 123 (02) :504-522
[4]  
Bucur D., 1996, ANN SCUOLA NORM SUP, V23, P681
[5]  
Chenais D, 1987, ENG OPTIMIZ, V11, P289, DOI 10.1080/03052158708941052
[6]   COMMUTATORS OF SINGULAR INTEGRALS AND BILINEAR SINGULAR INTEGRALS [J].
COIFMAN, RR ;
MEYER, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 212 (OCT) :315-331
[7]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[8]   On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow [J].
Feireisl, E ;
Petzeltová, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (3-4) :755-767
[9]   On the domain dependence of solutions to the compressible Navier-Stokes equations of a barotropic fluid [J].
Feireisl, E ;
Novotny, A ;
Petzeltová, H .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2002, 25 (12) :1045-1073
[10]  
Feireisl E., 2001, COMMENT MATH U CAROL, V42, P83