Multiscale flow in an electro-hydrodynamically driven oil-in-oil emulsion

被引:14
作者
Varshney, Atul [1 ,2 ]
Gohil, Smita [2 ]
Sathe, Mayur [3 ]
Rao, Seshagiri R., V [4 ]
Joshi, J. B. [5 ]
Bhattacharya, S. [2 ]
Yethiraj, Anand [4 ,6 ]
Ghosh, Shankar [2 ]
机构
[1] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[2] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Homi Bhabha Rd, Bombay 400005, Maharashtra, India
[3] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA
[4] TIFR Ctr Interdisciplinary Sci, Osman Sagar Rd, Hyderabad 500075, Andhra Pradesh, India
[5] Homi Bhabha Natl Inst, Bombay 400094, Maharashtra, India
[6] Mem Univ Newfoundland, Dept Phys & Phys Oceanog, St John, NF A1B 3X7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
TURBULENCE; ELECTROHYDRODYNAMICS; FLUIDS;
D O I
10.1039/c5sm02316e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Efficient mixing strategies in a fluid involve generation of multi-scale flows which are strongly suppressed in highly viscous systems. In this work, we report a novel form of multi-scale flow, driven by an external electric field, in a highly viscous (eta similar to 1 Pa s) oil-in-oil emulsion system consisting of micronsize droplets. This electro-hydrodynamic flow leads to dynamical organization at spatial scales much larger than that of the individual droplets. We characterize the dynamics associated with these structures by measuring the time variation of the bulk Reynolds stress in a rheometer, as well as through a microscale rheometric measurement by probing the spectrum of fluctuations of a thin fiber cantilever driven by these flows. The results display scale invariance in the energy spectra over three decades with a power law reminiscent of turbulent convection. We also demonstrate the mixing efficiency in such micro-scale systems.
引用
收藏
页码:1759 / 1764
页数:6
相关论文
共 26 条
[1]  
[Anonymous], 1972, 1 COURSE TURBULENCE
[2]   The Onset of Turbulence in Pipe Flow [J].
Avila, Kerstin ;
Moxey, David ;
de Lozar, Alberto ;
Avila, Marc ;
Barkley, Dwight ;
Hof, Bjorn .
SCIENCE, 2011, 333 (6039) :192-196
[3]   Large velocity fluctuations in small-Reynolds-number pipe flow of polymer solutions [J].
Bonn, D. ;
Ingremeau, F. ;
Amarouchene, Y. ;
Kellay, H. .
PHYSICAL REVIEW E, 2011, 84 (04)
[4]   Emergence of macroscopic directed motion in populations of motile colloids [J].
Bricard, Antoine ;
Caussin, Jean-Baptiste ;
Desreumaux, Nicolas ;
Dauchot, Olivier ;
Bartolo, Denis .
NATURE, 2013, 503 (7474) :95-98
[5]   Electrohydrodynamic interaction of spherical particles under Quincke rotation [J].
Das, Debasish ;
Saintillan, David .
PHYSICAL REVIEW E, 2013, 87 (04)
[6]   Fluid Dynamics of Bacterial Turbulence [J].
Dunkel, Joern ;
Heidenreich, Sebastian ;
Drescher, Knut ;
Wensink, Henricus H. ;
Baer, Markus ;
Goldstein, Raymond E. .
PHYSICAL REVIEW LETTERS, 2013, 110 (22)
[7]  
Garrett C, 2000, J PHYS OCEANOGR, V30, P2163, DOI 10.1175/1520-0485(2000)030<2163:TCBBSS>2.0.CO
[8]  
2
[9]   Elastic turbulence in a polymer solution flow [J].
Groisman, A ;
Steinberg, V .
NATURE, 2000, 405 (6782) :53-55
[10]   FUNDAMENTALS OF THE HYDRODYNAMIC MECHANISM OF SPLITTING IN DISPERSION PROCESSES [J].
HINZE, JO .
AICHE JOURNAL, 1955, 1 (03) :289-295