ON A MEASURE ZERO STABILITY PROBLEM OF A CYCLIC EQUATION

被引:5
作者
Chung, Jaeyoung [1 ]
Rassias, John Michael [2 ]
机构
[1] Kunsan Natl Univ, Dept Math, Kunsan 573701, South Korea
[2] Univ Athens, Pedag Dept EE, Sect Math & Informat, Athens, Greece
基金
新加坡国家研究基金会;
关键词
asymptotic behaviour; Baire category theorem; Cauchy functional equation; cyclic functional equation; first category; Lebesgue measure; quadratic functional equation; FUNCTIONAL-EQUATION; RESTRICTED DOMAIN; ULAM STABILITY;
D O I
10.1017/S0004972715001185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a commutative group, Y a real Banach space and f : G -> Y. We prove the Ulam-Hyers stability theorem for the cyclic functional equation 1/vertical bar H vertical bar Sigma(h is an element of H)f(x + h . y) = f(x) + f(y) for all x, y is an element of Omega, where H is a finite cyclic subgroup of Aut( G) and Omega subset of G x G satisfies a certain condition. As a consequence, we consider a measure zero stability problem of the functional equation 1/N Sigma(N)(k=1) f(z + omega(k) zeta) = f(z) + f(zeta) for all (z, zeta) is an element of Omega, where f : C -> Y; omega = e(2 pi i/N) and Omega subset of C-2 has four-dimensional Lebesgue measure 0.
引用
收藏
页码:272 / 282
页数:11
相关论文
共 16 条
[1]  
[Anonymous], J INEQUAL PURE APPL
[2]   Hyperstability of the Jensen functional equation [J].
Bahyrycz, A. ;
Piszczek, M. .
ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) :353-365
[3]   On solutions of the second generalization of d'Alembert's functional equation on a restricted domain [J].
Bahyrycz, Anna .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 223 :209-215
[4]   On solutions of the d'Alembert equation on a restricted domain [J].
Bahyrycz, Anna ;
Brzdek, Janusz .
AEQUATIONES MATHEMATICAE, 2013, 85 (1-2) :169-183
[5]   Stability of an alternative functional equation [J].
Batko, Bogdan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (01) :303-311
[6]   A Fixed Points Approach to stability of the Pexider Equation [J].
Bouikhalene, Belaid ;
Elciorachi, Elhoucien ;
Rassias, John Michael .
TBILISI MATHEMATICAL JOURNAL, 2014, 7 (02) :95-110
[7]  
Brzdek J., 2009, Aust. J. Math. Anal. Appl., V6
[8]   Quadratic functional equations in a set of Lebesgue measure zero [J].
Chung, Jaeyoung ;
Rassias, John Michael .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (02) :1065-1075
[9]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[10]   On the Hyers-Ulam stability of the functional equations that have the quadratic property [J].
Jung, SM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 222 (01) :126-137