ON A MEASURE ZERO STABILITY PROBLEM OF A CYCLIC EQUATION

被引:5
|
作者
Chung, Jaeyoung [1 ]
Rassias, John Michael [2 ]
机构
[1] Kunsan Natl Univ, Dept Math, Kunsan 573701, South Korea
[2] Univ Athens, Pedag Dept EE, Sect Math & Informat, Athens, Greece
基金
新加坡国家研究基金会;
关键词
asymptotic behaviour; Baire category theorem; Cauchy functional equation; cyclic functional equation; first category; Lebesgue measure; quadratic functional equation; FUNCTIONAL-EQUATION; RESTRICTED DOMAIN; ULAM STABILITY;
D O I
10.1017/S0004972715001185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a commutative group, Y a real Banach space and f : G -> Y. We prove the Ulam-Hyers stability theorem for the cyclic functional equation 1/vertical bar H vertical bar Sigma(h is an element of H)f(x + h . y) = f(x) + f(y) for all x, y is an element of Omega, where H is a finite cyclic subgroup of Aut( G) and Omega subset of G x G satisfies a certain condition. As a consequence, we consider a measure zero stability problem of the functional equation 1/N Sigma(N)(k=1) f(z + omega(k) zeta) = f(z) + f(zeta) for all (z, zeta) is an element of Omega, where f : C -> Y; omega = e(2 pi i/N) and Omega subset of C-2 has four-dimensional Lebesgue measure 0.
引用
收藏
页码:272 / 282
页数:11
相关论文
共 50 条