Controlling energy coupling and particle ejection from aluminum surfaces irradiated with ultrashort laser pulses

被引:7
作者
Colombier, J. P. [1 ,2 ,3 ]
Audouard, E. [1 ,2 ,3 ]
Combis, P. [4 ]
Rosenfeld, A. [5 ]
Hertel, I. V. [5 ]
Stoian, R. [1 ,2 ,3 ]
机构
[1] CNRS, Lab Hubert Curien, UMR 5516, F-42000 St Etienne, France
[2] Univ Lyon, F-42023 St Etienne, France
[3] Univ St Etienne, F-42000 St Etienne, France
[4] CEA, DAM Ile France, Dept Phys Theor & Appliquee, F-91297 Arpajon, France
[5] Max Born Inst Nichtlineare Opt & Kurzzeitspektros, D-12489 Berlin, Germany
关键词
Hydrodynamic simulation; Ultrashort laser ablation pulse-shaping; Particulates ejection; Nanodroplets;
D O I
10.1016/j.apsusc.2009.04.081
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrodynamic simulations are used to evaluate the potential of ultrashort laser pulses to localize energy at metallic surfaces, in our case aluminum. The emphasis is put on the dynamic sequence of laser energy deposition steps during the electron-ion nonequilibrium stage and the subsequent matter transformation phases. The simulations indicate correlated optical and thermodynamical states associated to specific electronic collisional mechanisms. The timescales of energy deposition deliver a guideline for using relevant relaxation times to improve the energy coupling into the material. We focus on a class of pump-probe experiments which investigate energy storage and particle emission from solids under ultrafast laser irradiation. Moreover, we have used our model to explain the experimentally observed optimization of energy coupling by tailoring temporal laser intensity envelopes and its subsequent influence on the ablation rate and on the composition of ablation products. Potential control for nanoparticle generation is discussed. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:9597 / 9600
页数:4
相关论文
共 11 条
[1]  
Bushman AV, 1993, SOV TECH REV B, V5, P1
[2]   Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples [J].
Colombier, J. P. ;
Combis, P. ;
Rosenfeld, A. ;
Hertel, I. V. ;
Audouard, E. ;
Stoian, R. .
PHYSICAL REVIEW B, 2006, 74 (22)
[3]   Transient optical response of ultrafast nonequilibrium excited metals: Effects of electron-electron contribution to collisional absorption [J].
Colombier, J. P. ;
Combis, P. ;
Audouard, E. ;
Stoian, R. .
PHYSICAL REVIEW E, 2008, 77 (03)
[4]   Hydrodynamic simulations of metal ablation by femtosecond laser irradiation [J].
Colombier, JP ;
Combis, P ;
Bonneau, F ;
Le Harzic, R ;
Audouard, E .
PHYSICAL REVIEW B, 2005, 71 (16)
[5]   Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter [J].
Eidmann, K ;
Meyer-ter-Vehn, J ;
Schlegel, T ;
Hüller, S .
PHYSICAL REVIEW E, 2000, 62 (01) :1202-1214
[6]   Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum [J].
Fisher, D ;
Fraenkel, M ;
Henis, Z ;
Moshe, E ;
Eliezer, S .
PHYSICAL REVIEW E, 2002, 65 (01)
[7]   Expansion of matter heated by an ultrashort laser pulse [J].
Inogamov, NA ;
Petrov, YV ;
Anisimov, SI ;
Oparin, AM ;
Shaposhnikov, NV ;
von der Linde, D ;
Meyer-ter-Vehn, J .
JETP LETTERS, 1999, 69 (04) :310-316
[8]   Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma [J].
Lescoute, E. ;
Hallo, L. ;
Hebert, D. ;
Chimier, B. ;
Etchessahar, B. ;
Tikhonchuk, V. T. ;
Chevalier, J. -M. ;
Combis, P. .
PHYSICS OF PLASMAS, 2008, 15 (06)
[9]   Material decomposition mechanisms in femtosecond laser interactions with metals [J].
Povarnitsyn, M. E. ;
Itina, T. E. ;
Sentis, M. ;
Khishchenko, K. V. ;
Levashov, P. R. .
PHYSICAL REVIEW B, 2007, 75 (23)
[10]   Dynamics of laser desorption and ablation of metals at the threshold on the femtosecond time scale [J].
Schmidt, V ;
Husinsky, W ;
Betz, G .
PHYSICAL REVIEW LETTERS, 2000, 85 (16) :3516-3519