A green approach to fast synthesis of reduced graphene oxide using alcohol for tuning semiconductor property

被引:18
作者
Phukan, Palash [1 ]
Narzary, Rewrewa [1 ]
Sahu, Partha Pratim [1 ]
机构
[1] Tezpur Univ, Dept Elect & Commun Engn, Napaam 784028, Assam, India
关键词
Reduced graphene oxide; Alcohol; XRD; Raman spectroscopy; FTIR; SEM; EDX; UV-Vis spectroscopy; Conductivity; Photocurrent; GRAPHITE OXIDE; CHEMICAL-REDUCTION; THERMAL REDUCTION; ROUTE; PERFORMANCE; NANOSHEETS; HYDRAZINE; FILMS;
D O I
10.1016/j.mssp.2019.104670
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reduced graphene oxide (rGO) has been focused on different application such as photovoltaic, energy storage and clinical instrumentation due to its unique chemical, electrical and optical properties. Proper synthesis of rGO is required to achieve these properties. Here, a green approach using alcoholic mediums has been introduced to reduce the oxygen content in rGO for enhancement of electrical properties. The rGO samples prepared using ethanol, methanol, 2-propanol and acetone as reducing agents were analyzed by various characterization. The reduction of oxygen functional groups using ethanol medium promises a synthesis of rGO with enhanced electrical conductivity due to the presence of more graphene domain. The ethanol reduced graphene oxide provides band gap of 3.13 eV and room temperature conductivity of 1.19 S/m showing the semiconducting property for application of electronics device.
引用
收藏
页数:7
相关论文
共 46 条
[1]   Novel graphene-based biosensor for early detection of Zika virus infection [J].
Afsahi, Savannah ;
Lerner, Mitchell B. ;
Goldstein, Jason M. ;
Lee, Joo ;
Tang, Xiaoling ;
Bagarozzi, Dennis A., Jr. ;
Pan, Deng ;
Locascio, Lauren ;
Walker, Amy ;
Barron, Francie ;
Goldsmith, Brett R. .
BIOSENSORS & BIOELECTRONICS, 2018, 100 :85-88
[2]  
Alam S, 2017, 2017 INTERNATIONAL CONFERENCE ON BROADBAND COMMUNICATION, WIRELESS SENSORS AND POWERING (BCWSP), P1
[3]   Aloe vera assisted facile green synthesis of reduced graphene oxide for electrochemical and dye removal applications [J].
Bhattacharya, Gourav ;
Sas, Shrawni ;
Wadhwa, Shikha ;
Mathur, Ashish ;
McLaughlin, James ;
Roy, Susanta Sinha .
RSC ADVANCES, 2017, 7 (43) :26680-26688
[4]   Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods [J].
Botas, Cristina ;
Alvarez, Patricia ;
Blanco, Patricia ;
Granda, Marcos ;
Blanco, Clara ;
Santamaria, Ricardo ;
Romasanta, Laura J. ;
Verdejo, Raquel ;
Lopez-Manchado, Miguel A. ;
Menendez, Rosa .
CARBON, 2013, 65 :156-164
[5]   Graphene-based large area dye-sensitized solar cell modules [J].
Casaluci, Simone ;
Gemmi, Mauro ;
Pellegrini, Vittorio ;
Di Carlo, Aldo ;
Bonaccorso, Francesco .
NANOSCALE, 2016, 8 (09) :5368-5378
[6]   Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves [J].
Chen, Wufeng ;
Yan, Lifeng ;
Bangal, Prakriti R. .
CARBON, 2010, 48 (04) :1146-1152
[7]  
Chou JB, 2014, ADV MATER, V26, P8041, DOI [10.1002/adma.201403302, 10.1002/adma.201402271]
[8]   Reduction of graphene oxide with substituted borohydrides [J].
Chua, Chun Kiang ;
Pumera, Martin .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (05) :1892-1898
[9]   Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics [J].
De Arco, Lewis Gomez ;
Zhang, Yi ;
Schlenker, Cody W. ;
Ryu, Koungmin ;
Thompson, Mark E. ;
Zhou, Chongwu .
ACS NANO, 2010, 4 (05) :2865-2873
[10]   Chemical reduction of graphene oxide using green reductants [J].
De Silva, K. K. H. ;
Huang, H. -H. ;
Joshi, R. K. ;
Yoshimura, M. .
CARBON, 2017, 119 :190-199