On the existence of positive solutions of a perturbed Hamiltonian system in RN

被引:42
作者
Alves, CO
Carriao, PC
Miyagaki, OH [1 ]
机构
[1] Univ Fed Vicosa, Dept Matemat, BR-36571000 Vicosa, MG, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58100970 Campina Grande, PB, Brazil
[3] Univ Fed Minas Gerais, Dept Matemat, BR-31270010 Belo Horizonte, MG, Brazil
关键词
positive solutions; Hamiltonian type; elliptic systems;
D O I
10.1016/S0022-247X(02)00413-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the Legendre-Fenchel transformation and the Mountain Pass Theorem due to Ambrosetti and Rabinowitz, we establish an existence result for perturbations of periodic and asymptotically periodic semilinear Hamiltonian systems of the type -Deltau + u = W-2(x)\nu\(p-1)nu in R-N, -Deltanu + nu = W-1(x)\u\(q-1)u in R-N, (P-W) u(x), nu(x) --> 0 as \x\ --> infinity, u > 0, nu > 0 in R-N, N greater than or equal to 2. Here, the numbers p, q > 1 are below the critical hyperbola if N greater than or equal to 3, that is, they satisfy 1/(p + 1) + 1/(q + 1) > (N - 2)/N, while no additional restrictions on p and q are required if N = 2. The functions W-i, i = 1, 2, are bounded positive continuous functions. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:673 / 690
页数:18
相关论文
共 19 条
[1]   Nonlinear perturbations of a periodic elliptic problem with critical growth [J].
Alves, CO ;
Carriao, PC ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (01) :133-146
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
Brezis H., 1983, Analyse Fonctionnelle-Theorie et Applications
[4]   POSITIVE SOLUTIONS OF SEMILINEAR ELLIPTIC-SYSTEMS [J].
CLEMENT, P ;
DEFIGUEIREDO, DG ;
MITIDIERI, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (5-6) :923-940
[5]   A VARIATIONAL APPROACH TO NONCOOPERATIVE ELLIPTIC-SYSTEMS [J].
COSTA, DG ;
MAGALHAES, CA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 25 (07) :699-715
[6]  
COTIZELATI V, 1992, COMMUN PUR APPL MATH, V45, P1217
[7]   Decay, symmetry and existence of solutions of semilinear elliptic systems [J].
De Figueiredo, DG ;
Yang, JF .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (03) :211-234
[8]  
de Figueiredo DG., 1996, ADV DIFFERENTIAL EQU, V1, P881
[9]  
DEFIGUEIREDO DG, 1994, T AM MATH SOC, V343, P99
[10]   ON THE EXISTENCE OF POSITIVE ENTIRE SOLUTIONS OF A SEMILINEAR ELLIPTIC EQUATION [J].
DING, WY ;
NI, WM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 91 (04) :283-308