Differential Harnack Estimates and Entropy Formulae for Weighted p-Heat Equations

被引:0
作者
Wang, Yu-Zhao [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
基金
美国国家科学基金会;
关键词
Weighted p-heat equations; W-entropy formula; gradient estimate; differential Harnack estimate; Bakry-Emery Ricci curvature; NONLINEAR DIFFUSION-EQUATIONS; COMPLETE RIEMANNIAN-MANIFOLDS; WITTEN LAPLACIAN; POROUS-MEDIUM;
D O I
10.1007/s00025-017-0675-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain various global differential Harnack estimates for positive solutions to weighted p-heat equation on closed smooth metric measure space with a lower m-Bakry-Eemery Ricci curvature bound. Moreover, Perelman type W-entropy formulae and Li-Yau type entropy inequalities are derived for weighted p-heat equation on compact with boundary (or no boundary) smooth metric measure space with nonnegative (or negative) m-Bakry-Eemery Ricci curvature, which are new in non-weighted case and generalized the results of Kotschwar and Ni (Ann Sci ec Norm Super 42(1):1-36, 2009) and Wang et al. (Acta Math Sci Ser B Engl Ed 33(4):963-974, 2013).
引用
收藏
页码:1499 / 1520
页数:22
相关论文
共 25 条
  • [1] Bakry D., 1985, SEM PROB 19, V1123, P177
  • [2] Bakry D., 2014, Analysis and geometry of Markov diffusion operators, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V348
  • [3] Gradient estimates for doubly nonlinear diffusion equations
    Chen, Daguang
    Xiong, Changwei
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 112 : 156 - 164
  • [4] Chow B., 2006, Hamiltons Ricci Flow. Graduate Studies in Mathematics, V77
  • [5] Generic mean curvature flow I; generic singularities
    Colding, Tobias H.
    Minicozzi, William P., II
    [J]. ANNALS OF MATHEMATICS, 2012, 175 (02) : 755 - 833
  • [6] Hamilton R., 2011, GEOM ANAL, VI, P329
  • [7] Hamilton R. S., 1993, COMMUN ANAL GEOM, V1, P113
  • [8] GRADIENT ESTIMATES AND ENTROPY FORMULAE OF POROUS MEDIUM AND FAST DIFFUSION EQUATIONS FOR THE WITTEN LAPLACIAN
    Huang, Guangyue
    Li, Haizhong
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2014, 268 (01) : 47 - 78
  • [9] Kotschwar B, 2009, ANN SCI ECOLE NORM S, V42, P1
  • [10] Differential Harnack inequalities on Riemannian manifolds I: Linear heat equation
    Li, Junfang
    Xu, Xiangjin
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (05) : 4456 - 4491