Algorithms and Programs of Suboptimal Nonlinear Filtering for Markov Processes

被引:2
作者
Rudenko, Evgeny [1 ]
机构
[1] Moscow Inst Aviat Technol, 4 Volokolamskoe Shosse, Moscow 125993, Russia
来源
COMPUTATIONAL MECHANICS AND MODERN APPLIED SOFTWARE SYSTEMS (CMMASS'2019) | 2019年 / 2181卷
基金
俄罗斯基础研究基金会;
关键词
SYSTEMS; ORDER;
D O I
10.1063/1.5135677
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of optimal recurrence estimation of state vector for a nonlinear stochastic dynamic system, which can be multi-modal (multi-structure, switching, logical-dynamical), according to discrete nonlinear measurements is considered. The problem of obtaining real-time estimates on a low power computer is discussed. The covariance Gaussian and Taylorian approximations are used both to the classical infinite-dimensional filter and to a number of new finite-dimensional optimized structure filters. The software package for modeling these filters by the Monte-Carlo method is described.
引用
收藏
页数:7
相关论文
共 36 条
[1]  
[Anonymous], 1998, APPL NONLINEAR FILTE
[2]   Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature [J].
Arasaratnam, Ienkaran ;
Haykin, Simon ;
Elliott, Robert J. .
PROCEEDINGS OF THE IEEE, 2007, 95 (05) :953-977
[3]   Cubature Kalman Filtering for Continuous-Discrete Systems: Theory and Simulations [J].
Arasaratnam, Ienkaran ;
Haykin, Simon ;
Hurd, Thomas R. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (10) :4977-4993
[4]   Cubature Kalman Filters [J].
Arasaratnam, Ienkaran ;
Haykin, Simon .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) :1254-1269
[5]  
Bain A, 2009, STOCH MOD APPL PROBA, V60, P1, DOI 10.1007/978-0-387-76896-0_1
[6]   A survey of numerical methods for nonlinear filtering problems [J].
Budhiraja, Amarjit ;
Chen, Lingji ;
Lee, Chihoon .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) :27-36
[7]  
Bukhalev V. A., 1996, RECOGNITION ESTIMATI
[8]  
Candy J. V., 2009, Bayesian signal processing: classical, modern, and particle filtering methods
[9]   An overview of existing methods and recent advances in sequential Monte Carlo [J].
Cappe, Olivier ;
Godsill, Simon J. ;
Moulines, Eric .
PROCEEDINGS OF THE IEEE, 2007, 95 (05) :899-924
[10]   THE STOCHASTIC FILTERING PROBLEM: A BRIEF HISTORICAL ACCOUNT [J].
Crisan, Dan .
JOURNAL OF APPLIED PROBABILITY, 2014, 51 (0A) :13-22