COMPACT LIE GROUPS: EULER CONSTRUCTIONS AND GENERALIZED DYSON CONJECTURE

被引:18
作者
Cacciatori, S. L. [1 ,2 ]
Piazza, F. Dalla [3 ]
Scotti, A. [4 ]
机构
[1] Univ Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy
[2] INFN, Via Celoria 16, I-20133 Milan, Italy
[3] Univ Roma La Sapienza, Dipartimento Matemat, Piazzale A Moro 2, I-00185 Rome, Italy
[4] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
关键词
Lie groups; Euler parameterization; Macdonald conjecture; Dyson integral; VOLUME;
D O I
10.1090/tran/6795
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A generalized Euler parameterization of a compact Lie group is a way for parameterizing the group starting from a maximal Lie subgroup, which allows a simple characterization of the range of parameters. In the present paper we consider the class of all compact connected Lie groups. We present a general method for realizing their generalized Euler parameterization starting from any symmetrically embedded Lie group. Our construction is based on a detailed analysis of the geometry of these groups. As a byproduct this gives rise to an interesting connection with certain Dyson integrals. In particular, we obtain a geometry based proof of a Macdonald conjecture regarding the Dyson integrals correspondent to the root systems associated to all irreducible symmetric spaces. As an application of our general method we explicitly parameterize all groups of the class of simple, simply connected compact Lie groups. We provide a table giving all necessary ingredients for all such Euler parameterizations.
引用
收藏
页码:4709 / 4724
页数:16
相关论文
共 18 条
[1]  
Araki S., 1962, J. Math. Osaka City Univ, V13, P1
[2]  
Bernardoni F, 2008, ADV THEOR MATH PHYS, V12, P889
[3]   Mapping the geometry of the E6 group [J].
Bernardoni, Fabio ;
Cacciatori, Sergio L. ;
Cerchiai, Bianca L. ;
Scotti, Antonio .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (01)
[4]   On the euler angles for SU(N) [J].
Bertini, S ;
Cacciatori, SL ;
Cerchiai, BL .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (04)
[5]  
Bump D, 2013, GRAD TEXTS MATH, V225, P1, DOI 10.1007/978-1-4614-8024-2
[6]  
Cacciatori S. L., 2010, GROUP THEORY CLASSES, V2009
[7]  
Cacciatori SL, 2011, ADV THEOR MATH PHYS, V15, P1605
[8]  
Cacciatori Sergio L., 2005, J MATH PHYS, V46, P17, DOI [10.1063/1.1993549, DOI 10.1063/1.1993549.MR2165858]
[9]  
Cacciatori Sergio L., 2005, J MATH PHYS, V46, P6, DOI [10.1063/1.2009627, DOI 10.1063/1.2009627.MR2166426]
[10]   The importance of the Selberg integral [J].
Forrester, Peter J. ;
Warnaar, S. Ole .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 45 (04) :489-534