Universal characteristic factors and Furstenberg averages

被引:137
作者
Ziegler, Tamar [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
D O I
10.1090/S0894-0347-06-00532-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:53 / 97
页数:45
相关论文
共 33 条
[11]  
GREEN B, IN PRESS ANN MATH
[12]   Nonconventional ergodic averages and nilmanifolds [J].
Host, B ;
Kra, B .
ANNALS OF MATHEMATICS, 2005, 161 (01) :397-488
[13]   An odd Furstenberg-Szemeredi theorem and quasi-affine systems [J].
Host, B ;
Kra, B .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 86 (1) :183-220
[14]   Convergence of Conze-Lesigne averages [J].
Host, B ;
Kra, B .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 :493-509
[15]  
Host B., COMMUNICATION
[16]  
Lazard M., 1954, ANN SCI ECOLE NORM S, V71, P101
[17]   Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold [J].
Leibman, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :201-213
[18]   Polynomial sequences in groups [J].
Leibman, A .
JOURNAL OF ALGEBRA, 1998, 201 (01) :189-206
[19]   FUNCTIONAL-EQUATIONS, JOINING OF SKEW PRODUCTS AND ERGODIC-THEOREMS FOR DIAGONAL MEASURES [J].
LESIGNE, E .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1993, 121 (03) :315-351
[20]  
LESIGNE E, 1987, ANN I H POINCARE-PR, V23, P593