SEVERI VARIETIES AND SELF-RATIONAL MAPS OF K3 SURFACES

被引:10
作者
Dedieu, Thomas [1 ]
机构
[1] Univ Paris 06, Inst Math Jussieu, Equipe Topol & Geometrie Algebr, UMR 7586, F-75013 Paris, France
关键词
Severi varieties; self-rational maps; K3; surfaces; CURVES; FAMILIES; NUMBER;
D O I
10.1142/S0129167X09005844
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Self-rational maps of generic algebraic K3 surfaces are conjectured to be trivial. We relate this conjecture to a conjecture concerning the irreducibility of the universal Severi varieties parameterizing nodal curves of given genus and degree lying on some K3 surface. We also establish a number of numerical constraints satisfied by such nontrivial rational maps, that is of topological degree > 1.
引用
收藏
页码:1455 / 1477
页数:23
相关论文
共 50 条
[41]   On curves on K3 surfaces, II [J].
Martens, Gerriet .
ARCHIV DER MATHEMATIK, 2018, 110 (01) :35-43
[42]   Period- and mirror-maps for the quartic K3 [J].
Hartmann, Heinrich .
MANUSCRIPTA MATHEMATICA, 2013, 141 (3-4) :391-422
[43]   Good reduction of K3 surfaces [J].
Liedtke, Christian ;
Matsumoto, Yuya .
COMPOSITIO MATHEMATICA, 2018, 154 (01) :1-35
[44]   Ordinary reduction of K3 surfaces [J].
Bogomolov, Fedor A. ;
Zarhin, Yuri G. .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (02) :206-213
[45]   Ulrich bundles on K3 surfaces [J].
Faenzi, Daniele .
ALGEBRA & NUMBER THEORY, 2019, 13 (06) :1443-1454
[46]   Nikulin involutions on K3 surfaces [J].
van Geemen, Bert ;
Sarti, Alessandra .
MATHEMATISCHE ZEITSCHRIFT, 2007, 255 (04) :731-753
[47]   Mirror symmetry for K3 surfaces [J].
Bott, C. J. ;
Comparin, Paola ;
Priddis, Nathan .
GEOMETRIAE DEDICATA, 2021, 212 (01) :21-55
[48]   Motives of isogenous K3 surfaces [J].
Huybrechts, Daniel .
COMMENTARII MATHEMATICI HELVETICI, 2019, 94 (03) :445-458
[49]   Autoequivalences of twisted K3 surfaces [J].
Reinecke, Emanuel .
COMPOSITIO MATHEMATICA, 2019, 155 (05) :912-937
[50]   On curves on K3 surfaces: III [J].
Martens, Gerriet .
ARCHIV DER MATHEMATIK, 2020, 115 (04) :401-412