SEVERI VARIETIES AND SELF-RATIONAL MAPS OF K3 SURFACES

被引:10
作者
Dedieu, Thomas [1 ]
机构
[1] Univ Paris 06, Inst Math Jussieu, Equipe Topol & Geometrie Algebr, UMR 7586, F-75013 Paris, France
关键词
Severi varieties; self-rational maps; K3; surfaces; CURVES; FAMILIES; NUMBER;
D O I
10.1142/S0129167X09005844
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Self-rational maps of generic algebraic K3 surfaces are conjectured to be trivial. We relate this conjecture to a conjecture concerning the irreducibility of the universal Severi varieties parameterizing nodal curves of given genus and degree lying on some K3 surface. We also establish a number of numerical constraints satisfied by such nontrivial rational maps, that is of topological degree > 1.
引用
收藏
页码:1455 / 1477
页数:23
相关论文
共 50 条
[21]   Hypergeometric groups and dynamics on K3 surfaces [J].
Iwasaki, Katsunori ;
Takada, Yuta .
MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (01) :835-891
[22]   CURVES ON K3 SURFACES [J].
Chen, Xi ;
Gounelas, Frank ;
Liedtke, Christian .
DUKE MATHEMATICAL JOURNAL, 2022, 171 (16) :3283-3362
[23]   Good reduction criterion for K3 surfaces [J].
Matsumoto, Yuya .
MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (1-2) :241-266
[24]   Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties [J].
Ito, Atsushi ;
Miura, Makoto ;
Okawa, Shinnosuke ;
Ueda, Kazushi .
SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (03)
[25]   Syzygies of tangent-developable surfaces and K3 carpets via secant varieties [J].
Park, Jinhyung .
ALGEBRA & NUMBER THEORY, 2025, 19 (05) :1029-1048
[26]   Irreducible symplectic varieties from moduli spaces of sheaves on K3 and Abelian surfaces [J].
Perego, Arvid ;
Rapagnetta, Antonio .
ALGEBRAIC GEOMETRY, 2023, 10 (03) :348-393
[27]   Rational Hodge isometries of hyper-Kahler varieties of K3[n] type are algebraic [J].
Markman, Eyal .
COMPOSITIO MATHEMATICA, 2024, 160 (06) :1261-1303
[28]   INSEPARABLE MAPS ON We-VALUED LOCAL COHOMOLOGY GROUPS OF NONTAUT RATIONAL DOUBLE POINT SINGULARITIES AND THE HEIGHT OF K3 SURFACES [J].
Matsumoto, Yuya .
JOURNAL OF COMMUTATIVE ALGEBRA, 2023, 15 (03) :377-404
[29]   Uniform Potential Density for Rational Points on Algebraic Groups and Elliptic K3 Surfaces [J].
Lai, Kuan-Wen ;
Nakahara, Masahiro .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (23) :18541-18588
[30]   The Hodge conjecture for self-products of certain K3 surfaces [J].
Schlickewei, Ulrich .
JOURNAL OF ALGEBRA, 2010, 324 (03) :507-529