SEVERI VARIETIES AND SELF-RATIONAL MAPS OF K3 SURFACES
被引:10
|
作者:
Dedieu, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Inst Math Jussieu, Equipe Topol & Geometrie Algebr, UMR 7586, F-75013 Paris, FranceUniv Paris 06, Inst Math Jussieu, Equipe Topol & Geometrie Algebr, UMR 7586, F-75013 Paris, France
Dedieu, Thomas
[1
]
机构:
[1] Univ Paris 06, Inst Math Jussieu, Equipe Topol & Geometrie Algebr, UMR 7586, F-75013 Paris, France
Self-rational maps of generic algebraic K3 surfaces are conjectured to be trivial. We relate this conjecture to a conjecture concerning the irreducibility of the universal Severi varieties parameterizing nodal curves of given genus and degree lying on some K3 surface. We also establish a number of numerical constraints satisfied by such nontrivial rational maps, that is of topological degree > 1.
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy