SEVERI VARIETIES AND SELF-RATIONAL MAPS OF K3 SURFACES

被引:10
|
作者
Dedieu, Thomas [1 ]
机构
[1] Univ Paris 06, Inst Math Jussieu, Equipe Topol & Geometrie Algebr, UMR 7586, F-75013 Paris, France
关键词
Severi varieties; self-rational maps; K3; surfaces; CURVES; FAMILIES; NUMBER;
D O I
10.1142/S0129167X09005844
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Self-rational maps of generic algebraic K3 surfaces are conjectured to be trivial. We relate this conjecture to a conjecture concerning the irreducibility of the universal Severi varieties parameterizing nodal curves of given genus and degree lying on some K3 surface. We also establish a number of numerical constraints satisfied by such nontrivial rational maps, that is of topological degree > 1.
引用
收藏
页码:1455 / 1477
页数:23
相关论文
共 50 条