Resveratrol alleviates osteoporosis through improving the osteogenic differentiation of bone marrow mesenchymal stem cells

被引:3
|
作者
Chen, X-H [1 ,2 ,3 ]
Shi, Z-G [4 ]
Lin, H-B [1 ,2 ,3 ]
Wu, F. [2 ,3 ,5 ]
Zheng, F. [1 ,2 ,3 ]
Wu, C-F [1 ,2 ,3 ]
Huang, M-W [2 ,3 ,5 ]
机构
[1] Putian Univ, Affiliated Hosp, Dept Orthoped, Putian, Peoples R China
[2] Fujian Med Univ, Affiliated Hosp, Putian Univ, Teaching Hosp, Putian, Peoples R China
[3] Southern Med Univ, Affiliated Putian Hosp, Putian, Peoples R China
[4] Capital Med Univ, Beijing Chest Hosp, Dept Anesthesia, Beijing, Peoples R China
[5] Putian Univ, Affiliated Hosp, Dept Rehabil Med, Putian, Peoples R China
关键词
Osteoporosis; Resveratrol; TNF-alpha; TNF-ALPHA; EXPRESSION; METABOLISM; PATHWAY; PROTEIN; RUNX2;
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
OBJECTIVE: To investigate the protective effect of Resveratrol (RES) on TNF-alpha-induced inhibition of osteogenic differentiation, thus alleviating the progression of osteoporosis (OP). MATERIALS AND METHODS: OP model in rats was first conducted by performing ovariectomy (OVX). Rats were randomly divided into sham group, OVX group, and RES+OVX group. Body weight of each rat was regularly recorded every week. Bone mineral density (BMD) of rat femoral metaphysis was measured by micro-CT. Changes in radial degrees and loads of rat femora were examined through three-point bending experiments. Relative levels of OCN and Runx2 in each group were determined by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). Alkaline phosphatase (ALP) activity and calcification ability were assessed through ALP staining and alizarin red staining, respectively. Bone mesenchymal stem cells (BMSCs) were extracted from healthy rats and divided into control group, Tumor necrosis factor-alpha (TNF-alpha) group, RES group, and TNF-alpha+RES group based on different treatments. Relative levels of OCN and Runx2, ALP activity, and calcification ability in each group were detected in the same way. Finally, protein levels of NF-kappa B and beta-catenin in BMSCs were determined. RESULTS: Rats in each group gained body weight during the experimental period, especially those in OVX group and RES+OVX group. No significant difference in the body weight was found between OVX group and RES+OVX group. BMD in rat femora of RES+OVX group was higher than in OVX group but lower than sham group. Elastic/max radial degree and elastic/max load of femora were markedly reduced in OVX group compared to RES+OVX group. Relative levels of OCN and Runx2. ALP activity and calcification ability decreased in OVX group relative to sham group, which were partially reversed by RES treatment. After osteogenic differentiation in BMSCs induced with TNF-alpha, viability and calcification ability were markedly reduced and were upregulated by RES treatment. Moreover, RES treatment enhanced the down regulated levels of OCN and Runx2 in BMSCs undergoing TNF-alpha induction. Upregulated protein levels of nuclear factor kappa-B (NF-kappa B) and beta-catenin in TNF-alpha-induced BMSCs were down regulated by RES treatment. CONCLUSIONS: The inhibited osteogenic differentiation of BMSCs undergoing TNF-alpha induction is improved by resveratrol treatment, which contributes to alleviate the progression of osteoporosis.
引用
收藏
页码:6352 / 6359
页数:8
相关论文
共 50 条
  • [31] Effects of Tanshinone IIA on osteogenic differentiation of mouse bone marrow mesenchymal stem cells
    Kejun Qian
    Huazhong Xu
    Teng Dai
    Keqing Shi
    Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388 : 1201 - 1209
  • [32] Effect of Platelet Releasate on Osteogenic Differentiation of Human Mesenchymal Bone Marrow Stem Cells
    Kosmacheva, S. M.
    Danilkovich, N. N.
    Shchepen', A. V.
    Ignatenko, S. I.
    Potapnev, M. P.
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2014, 156 (04) : 560 - 565
  • [33] Effects of Tanshinone IIA on osteogenic differentiation of mouse bone marrow mesenchymal stem cells
    Qian, Kejun
    Xu, Huazhong
    Dai, Teng
    Shi, Keqing
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2015, 388 (11) : 1201 - 1209
  • [34] Effects of rifampicin on osteogenic differentiation and proliferation of human mesenchymal stem cells in the bone marrow
    Zhang, Z.
    Wang, X.
    Luo, F.
    Yang, H.
    Hou, T.
    Zhou, Q.
    Dai, F.
    He, Q.
    Xu, J.
    GENETICS AND MOLECULAR RESEARCH, 2014, 13 (03) : 6398 - 6410
  • [35] OSTEOGENIC DIFFERENTIATION POTENTIAL OF HEALTY AND MULTIPLE MYELOMA BONE MARROW MESENCHYMAL STEM CELLS
    Aksoy, A.
    Subasi, C.
    Unal, Z.
    Mehtap, O.
    Erman, G.
    HAEMATOLOGICA, 2012, 97 : 595 - 595
  • [36] Cajanine promotes osteogenic differentiation and proliferation of human bone marrow mesenchymal stem cells
    Zhao, Zi-Yi
    Yang, Lei
    Mu, Xiaohong
    Xu, Lin
    Yu, Xing
    Jiao, Yong
    Zhang, Xiaozhe
    Fu, Lingling
    ADVANCES IN CLINICAL AND EXPERIMENTAL MEDICINE, 2019, 28 (01): : 45 - 50
  • [37] Lipopolysaccharide-activated macrophages regulate the osteogenic differentiation of bone marrow mesenchymal stem cells through exosomes
    Song, Xiao
    Xue, Yiwen
    Fan, Siyu
    Hao, Jing
    Deng, Runzhi
    PEERJ, 2022, 10
  • [38] Effect of Platelet Releasate on Osteogenic Differentiation of Human Mesenchymal Bone Marrow Stem Cells
    S. M. Kosmacheva
    N. N. Danilkovich
    A. V. Shchepen’
    S. I. Ignatenko
    M. P. Potapnev
    Bulletin of Experimental Biology and Medicine, 2014, 156 : 560 - 565
  • [39] Effect of inorganic phosphate on migration and osteogenic differentiation of bone marrow mesenchymal stem cells
    Lin, Hengzhang
    Zhou, Yong
    Lei, Qun
    Lin, Dong
    Chen, Jiang
    Wu, Chuhuo
    BMC DEVELOPMENTAL BIOLOGY, 2021, 21 (01):
  • [40] Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells
    Wang, Huichao
    Li, Chunbo
    Li, Jianming
    Zhu, Yingjie
    Jia, Yudong
    Zhang, Ying
    Zhang, Xiaodong
    Li, Wenlong
    Cui, Lei
    Li, Wuyin
    Liu, Youwen
    IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES, 2017, 20 (04) : 408 - 414