Resveratrol alleviates osteoporosis through improving the osteogenic differentiation of bone marrow mesenchymal stem cells

被引:3
|
作者
Chen, X-H [1 ,2 ,3 ]
Shi, Z-G [4 ]
Lin, H-B [1 ,2 ,3 ]
Wu, F. [2 ,3 ,5 ]
Zheng, F. [1 ,2 ,3 ]
Wu, C-F [1 ,2 ,3 ]
Huang, M-W [2 ,3 ,5 ]
机构
[1] Putian Univ, Affiliated Hosp, Dept Orthoped, Putian, Peoples R China
[2] Fujian Med Univ, Affiliated Hosp, Putian Univ, Teaching Hosp, Putian, Peoples R China
[3] Southern Med Univ, Affiliated Putian Hosp, Putian, Peoples R China
[4] Capital Med Univ, Beijing Chest Hosp, Dept Anesthesia, Beijing, Peoples R China
[5] Putian Univ, Affiliated Hosp, Dept Rehabil Med, Putian, Peoples R China
关键词
Osteoporosis; Resveratrol; TNF-alpha; TNF-ALPHA; EXPRESSION; METABOLISM; PATHWAY; PROTEIN; RUNX2;
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
OBJECTIVE: To investigate the protective effect of Resveratrol (RES) on TNF-alpha-induced inhibition of osteogenic differentiation, thus alleviating the progression of osteoporosis (OP). MATERIALS AND METHODS: OP model in rats was first conducted by performing ovariectomy (OVX). Rats were randomly divided into sham group, OVX group, and RES+OVX group. Body weight of each rat was regularly recorded every week. Bone mineral density (BMD) of rat femoral metaphysis was measured by micro-CT. Changes in radial degrees and loads of rat femora were examined through three-point bending experiments. Relative levels of OCN and Runx2 in each group were determined by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). Alkaline phosphatase (ALP) activity and calcification ability were assessed through ALP staining and alizarin red staining, respectively. Bone mesenchymal stem cells (BMSCs) were extracted from healthy rats and divided into control group, Tumor necrosis factor-alpha (TNF-alpha) group, RES group, and TNF-alpha+RES group based on different treatments. Relative levels of OCN and Runx2, ALP activity, and calcification ability in each group were detected in the same way. Finally, protein levels of NF-kappa B and beta-catenin in BMSCs were determined. RESULTS: Rats in each group gained body weight during the experimental period, especially those in OVX group and RES+OVX group. No significant difference in the body weight was found between OVX group and RES+OVX group. BMD in rat femora of RES+OVX group was higher than in OVX group but lower than sham group. Elastic/max radial degree and elastic/max load of femora were markedly reduced in OVX group compared to RES+OVX group. Relative levels of OCN and Runx2. ALP activity and calcification ability decreased in OVX group relative to sham group, which were partially reversed by RES treatment. After osteogenic differentiation in BMSCs induced with TNF-alpha, viability and calcification ability were markedly reduced and were upregulated by RES treatment. Moreover, RES treatment enhanced the down regulated levels of OCN and Runx2 in BMSCs undergoing TNF-alpha induction. Upregulated protein levels of nuclear factor kappa-B (NF-kappa B) and beta-catenin in TNF-alpha-induced BMSCs were down regulated by RES treatment. CONCLUSIONS: The inhibited osteogenic differentiation of BMSCs undergoing TNF-alpha induction is improved by resveratrol treatment, which contributes to alleviate the progression of osteoporosis.
引用
收藏
页码:6352 / 6359
页数:8
相关论文
共 50 条
  • [21] In Osteoporosis, differentiation of mesenchymal stem cells (MSCs) improves bone marrow adipogenesis
    Maria Pino, Ana
    Rosen, Clifford J.
    Pablo Rodriguez, J.
    BIOLOGICAL RESEARCH, 2012, 45 (03) : 279 - 287
  • [22] Melatonin restores osteoporosis-impaired osteogenic potential of bone marrow mesenchymal stem cells and alleviates bone loss through the HGF/PTEN/Wnt/β-catenin axis
    Zhang, Jun
    Jia, Guoliang
    Xue, Pan
    Li, Zhengwei
    THERAPEUTIC ADVANCES IN CHRONIC DISEASE, 2021, 12
  • [23] Icariin Facilitates Osteogenic Differentiation and Suppresses Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by Enhancing SOST Methylation in Postmenopausal Osteoporosis
    Chen, Xu
    Liu, Xizhe
    Wan, Junming
    Hu, Yanqing
    Wei, Fuxin
    JOURNAL OF GENE MEDICINE, 2025, 27 (01):
  • [24] Resveratrol Promotes Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells Through miR-193a/SIRT7 Axis
    Song, Chen-Yang
    Guo, Yu
    Chen, Fen-Yong
    Liu, Wen-Ge
    CALCIFIED TISSUE INTERNATIONAL, 2022, 110 (01) : 117 - 130
  • [25] Resveratrol Promotes Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells Through miR-193a/SIRT7 Axis
    Chen-Yang Song
    Yu Guo
    Fen-Yong Chen
    Wen-Ge Liu
    Calcified Tissue International, 2022, 110 : 117 - 130
  • [26] The expression of osteogenic genes and proteins in human bone marrow mesenchymal stem cells with respect to osteogenic differentiation
    Liu, F.
    EXPERIMENTAL HEMATOLOGY, 2006, 34 (09) : 82 - 82
  • [27] Rapamycin as an inhibitor of osteogenic differentiation in bone marrow-derived mesenchymal stem cells
    Isomoto, Shinji
    Hattori, Koji
    Ohgushi, Hajime
    Nakajima, Hiroshi
    Tanaka, Yasuhito
    Takakura, Yoshinori
    JOURNAL OF ORTHOPAEDIC SCIENCE, 2007, 12 (01) : 83 - 88
  • [28] Isomangiferin promotes the migration and osteogenic differentiation of rat bone marrow mesenchymal stem cells
    Gao, Bingjun
    Cheng, Xin
    Wu, Yarong
    Jiang, Boyi
    OPEN LIFE SCIENCES, 2024, 19 (01):
  • [29] Amelogenin Enhances the Osteogenic Differentiation of Mesenchymal Stem Cells Derived from Bone Marrow
    Tanimoto, K.
    Huang, Y. C.
    Tanne, Y.
    Kunimatsu, R.
    Michida, M.
    Yoshioka, M.
    Ozaki, N.
    Sasamoto, T.
    Yoshimi, Y.
    Kato, Y.
    Tanne, K.
    CELLS TISSUES ORGANS, 2012, 196 (05) : 411 - 419
  • [30] Mechanical Strain Regulates Osteogenic and Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells
    Li, Runguang
    Liang, Liang
    Dou, Yonggang
    Huang, Zeping
    Mo, Huiting
    Wang, Yaning
    Yu, Bin
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015