Sentiment Analysis with Machine Learning Methods on Social Media

被引:13
|
作者
Basarslan, Muhammet Sinan [1 ,2 ]
Kayaalp, Fatih [1 ]
机构
[1] Dogus Univ, Comp Programming, TR-34775 Istanbul, Turkey
[2] Duzce Univ, Dept Comp Engn, TR-81620 Duzce, Turkey
来源
ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL | 2020年 / 9卷 / 03期
关键词
Sentiment analysis; Social Media; !text type='Python']Python[!/text; Natural Language Processing;
D O I
10.14201/ADCAIJ202093515
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Social media has become an important part of our everyday life due to the widespread use of the Internet. Of the social media services, Twitter is among the most used ones around the world. People share their opinions by writing tweets about numerous subjects, such as politics, sports, economy, etc. Millions of tweets per day create a huge dataset, which drew attention of the data scientists to focus on these data for sentiment analysis. The sentiment analysis focuses to identify the social media posts of users about a specific topic and categorize them as positive, negative or neutral. Thus, the study aims to investigate the effect of types of text representation on the performance of sentiment analysis. In this study, two datasets were used in the experiments. The first one is the user reviews about movies from the IMDB, which has been labeled by Kotzias, and the second one is the Twitter tweets, including the tweets of users about health topic in English in 2019, collected using the Twitter API. The Python programming language was used in the study both for implementing the classification models using the Naive Bayes (NB), Support Vector Machines (SVM) and Artificial Neural Networks (ANN) algorithms, and for categorizing the sentiments as positive, negative and neutral. The feature extraction from the dataset was performed using Term Frequency-Inverse Document Frequency (TF-IDF) and Word2Vec (W2V) modeling techniques. The success percentages of the classification algorithms were compared at the end. According to the experimental results, Artificial Neural Network had the best accuracy performance in both datasets compared to the others.
引用
收藏
页码:5 / 15
页数:11
相关论文
共 50 条
  • [1] Sentiment Analysis of Social Media Networks Using Machine Learning
    Abd El-Jawad, Mohammed H.
    Hodhod, Rania
    Omar, Yasser M. K.
    2018 14TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO), 2018, : 174 - 176
  • [2] Optimization of machine learning models for sentiment analysis in social media
    Brandao, Jhonathan Godoi
    Castro Junior, Antonio P.
    Pacheco, Viviane M. Gomes
    Rodrigues, Cloves Gonsalves
    Belo, Orlando M. Oliveira
    Coimbra, Antonio Paulo
    Calixto, Wesley Pacheco
    INFORMATION SCIENCES, 2025, 694
  • [3] Sentiment Analysis of Social Media Comments Using Machine Learning Algorithms
    Taghiyeva, Laman
    Hasanova, Narmin
    Omarova, Masuda
    Rustamov, Samir
    2023 5th International Conference on Problems of Cybernetics and Informatics, PCI 2023, 2023,
  • [4] A sentiment analysis system for social media using machine learning techniques: Social enablement
    Rani, Sujata
    Kumar, Parteek
    DIGITAL SCHOLARSHIP IN THE HUMANITIES, 2019, 34 (03) : 569 - 581
  • [5] Machine Learning or Lexicon Based Sentiment Analysis Techniques on Social Media Posts
    John, David L.
    Stantic, Bela
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, PT II, 2022, 13758 : 3 - 12
  • [6] Thai Sentiment Analysis for Social Media Monitoring using Machine Learning Approach
    Srikamdee, Supawadee
    Suksawatchon, Ureerat
    Suksawatchon, Jakkarin
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 832 - 835
  • [7] Deep Learning for Social Media Sentiment Analysis
    Fithriasari, Kartika
    Jannah, Saidah Zahrotul
    Reyhana, Zakya
    MATEMATIKA, 2020, 36 (02) : 99 - 111
  • [8] Sentiment analysis of COVID-19 social media data through machine learning
    Dangi, Dharmendra
    Dixit, Dheeraj K.
    Bhagat, Amit
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 42261 - 42283
  • [9] Sentiment analysis of multi social media using machine and deep learning models: a review
    Vasanthi P.
    Madhu Viswanatham V.
    Multimedia Tools and Applications, 2024, 83 (42) : 90033 - 90051
  • [10] Multi-Class Sentiment Analysis of Social Media Data with Machine Learning Algorithms
    Mutanov, Galimkair
    Karyukin, Vladislav
    Mamykova, Zhanl
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (01): : 913 - 930