Recent developments in rapid thermal processing

被引:48
作者
Fiory, AT [1 ]
机构
[1] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA
关键词
spike annealing; ultra-shallow junctions; temperature control; emissivity; ion implantation;
D O I
10.1007/s11664-002-0031-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Rapid thermal annealing (RTA) with a short dwell time at maximum temperature is used with ion implantation to form shallow junctions and polycrystalline-Si gate electrodes in complementary, metal-oxide semiconductor (CMOS) Si processing. Wafers are heated by electric lamps or steady heat sources with rapid wafer transfer. Advanced methods use "spike anneals," wherein high-temperature ramp rates are used for both heating and cooling while also minimizing the dwell time at peak temperature to nominally zero. The fast thermal cycles are required to reduce the undesirable effects of transient-enhanced diffusion (TED) and thermal deactivation of the dopants. Because junction profiles are sensitive to annealing temperature, the challenge in spike annealing is to maintain temperature uniformity across the wafer and repeatability from wafer to wafer. Multiple lamp systems use arrayed temperature sensors for individual control zones. Other methods rely on process chambers that are designed for uniform wafer heating. Generally, sophisticated techniques for accurate temperature measurement and control by emissivity-compensated infrared pyrometry are required because processed Si wafers exhibit appreciable variation in emissivity.
引用
收藏
页码:981 / 987
页数:7
相关论文
共 42 条
[41]   IMPACT OF PATTERNED LAYERS ON TEMPERATURE NON-UNIFORMITY DURING RAPID THERMAL-PROCESSING FOR VLSI-APPLICATIONS [J].
VANDENABEELE, P ;
MAEX, K ;
DEKEERSMAECKER, R .
RAPID THERMAL ANNEALING / CHEMICAL VAPOR DEPOSITION AND INTEGRATED PROCESSING, 1989, 146 :149-160
[42]   The performance and reliability of PMOSFET's with ultrathin silicon nitride/oxide stacked gate dielectrics with nitrided Si-SiO2 interfaces prepared by remote plasma enhanced CVD and post-deposition rapid thermal annealing [J].
Wu, Y ;
Lucovsky, G ;
Lee, YM .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2000, 47 (07) :1361-1369