Comprehensive assessments of germline deletion structural variants reveal the association between prognostic MUC4 and CEP72 deletions and immune response gene expression in colorectal cancer patients

被引:8
作者
Lin, Peng-Chan [1 ,2 ,3 ,4 ]
Chen, Hui-O [1 ]
Lee, Chih-Jung [1 ]
Yeh, Yu-Min [3 ,4 ]
Shen, Meng-Ru [5 ,6 ,7 ]
Chiang, Jung-Hsien [1 ,2 ]
机构
[1] Natl Cheng Kung Univ, Coll Elect Engn & Comp Sci, Dept Comp Sci & Informat Engn, Tainan, Taiwan
[2] Natl Cheng Kung Univ, Inst Med Informat, Tainan, Taiwan
[3] Natl Cheng Kung Univ, Coll Med, Natl Cheng Kung Univ Hosp, Dept Oncol, Tainan, Taiwan
[4] Natl Cheng Kung Univ, Coll Med, Natl Cheng Kung Univ Hosp, Dept Internal Med, Tainan, Taiwan
[5] Natl Cheng Kung Univ, Coll Med, Grad Inst Clin Med, Tainan, Taiwan
[6] Natl Cheng Kung Univ, Coll Med, Natl Cheng Kung Univ Hosp, Dept Obstet & Gynecol, Tainan, Taiwan
[7] Natl Cheng Kung Univ, Coll Med, Natl Cheng Kung Univ Hosp, Dept Pharmacol, Tainan, Taiwan
关键词
Whole-genome sequencing; Cancer risk; Deletion structural variants; MUC4; CEP72; PREDICTION; SUSCEPTIBILITY;
D O I
10.1186/s40246-020-00302-3
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Functional disruptions by large germline genomic structural variants in susceptible genes are known risks for cancer. We used deletion structural variants (DSVs) generated from germline whole-genome sequencing (WGS) and DSV immune-related association tumor microenvironment (TME) to predict cancer risk and prognosis. Methods: We investigated the contribution of germline DSVs to cancer susceptibility and prognosis by silicon and causal inference models. DSVs in germline WGS data were generated from the blood samples of 192 cancer and 499 non-cancer subjects. Clinical information, including family cancer history (FCH), was obtained from the National Cheng Kung University Hospital and Taiwan Biobank. Ninety-nine colorectal cancer (CRC) patients had immune response gene expression data. We used joint calling tools and an attention-weighted model to build the cancer risk predictive model and identify DSVs in familial cancer. The survival support vector machine (survival-SVM) was used to select prognostic DSVs. Results: We identified 671 DSVs that could predict cancer risk. The area under the curve (AUC) of the receiver operating characteristic curve (ROC) of the attention-weighted model was 0.71. The 3 most frequent DSV genes observed in cancer patients were identified as ADCY9, AURKAPS1, and RAB3GAP2 (p < 0.05). The DSVs in SGSM2 and LHFPL3 were relevant to colorectal cancer. We found a higher incidence of FCH in cancer patients than in non-cancer subjects (p < 0.05). SMYD3 and NKD2DSV genes were associated with cancer patients with FCH (p < 0.05). We identified 65 immune-associated DSV markers for assessing cancer prognosis (p < 0.05). The functional protein of MUC4 DSV gene interacted with MAGE1 expression, according to the STRING database. The causal inference model showed that deleting the CEP72 DSV gene affect the recurrence-free survival (RFS) of IFIT1 expression. Conclusions: We established an explainable attention-weighted model for cancer risk prediction and used the survival-SVM for prognostic stratification by using germline DSVs and immune gene expression datasets. Comprehensive assessments of germline DSVs can predict the cancer risk and clinical outcome of colon cancer patients.
引用
收藏
页数:13
相关论文
共 38 条
[1]  
[Anonymous], ALIGNING SEQUENCE RE, DOI DOI 10.48550/ARXIV.1303.3997
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   Characterizing the Major Structural Variant Alleles of the Human Genome [J].
Audano, Peter A. ;
Sulovari, Arvis ;
Graves-Lindsay, Tina A. ;
Cantsilieris, Stuart ;
Sorensen, Melanie ;
Welch, AnneMarie E. ;
Dougherty, Max L. ;
Nelson, Bradley J. ;
Shah, Ankeeta ;
Dutcher, Susan K. ;
Warren, Wesley C. ;
Magrini, Vincent ;
McGrath, Sean D. ;
Li, Yang I. ;
Wilson, Richard K. ;
Eichler, Evan E. .
CELL, 2019, 176 (03) :663-+
[4]   Statistics review 12: Survival analysis [J].
Bewick, V ;
Cheek, L ;
Ball, J .
CRITICAL CARE, 2004, 8 (05) :389-394
[5]   Understanding the tumor immune microenvironment (TIME) for effective therapy [J].
Binnewies, Mikhail ;
Roberts, Edward W. ;
Kersten, Kelly ;
Chan, Vincent ;
Fearon, Douglas F. ;
Merad, Miriam ;
Coussens, Lisa M. ;
Gabrilovich, Dmitry I. ;
Ostrand-Rosenberg, Suzanne ;
Hedrick, Catherine C. ;
Vonderheide, Robert H. ;
Pittet, Mikael J. ;
Jain, Rakesh K. ;
Zou, Weiping ;
Howcroft, T. Kevin ;
Woodhouse, Elisa C. ;
Weinberg, Robert A. ;
Krummel, Matthew F. .
NATURE MEDICINE, 2018, 24 (05) :541-550
[6]   Structure, evolution, anal biology of the MUC4 mucin [J].
Chaturvedi, Pallavi ;
Singh, Ajay P. ;
Batra, Surinder K. .
FASEB JOURNAL, 2008, 22 (04) :966-981
[7]   Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project [J].
Chen, Chien-Hsiun ;
Yang, Jenn-Hwai ;
Chiang, Charleston W. K. ;
Hsiung, Chia-Ni ;
Wu, Pei-Ei ;
Chang, Li-Ching ;
Chu, Hou-Wei ;
Chang, Josh ;
Song, I-Wen ;
Yang, Show-Ling ;
Chen, Yuan-Tsong ;
Liu, Fu-Tong ;
Shen, Chen-Yang .
HUMAN MOLECULAR GENETICS, 2016, 25 (24) :5321-5331
[8]  
Croft D, 2014, NUCLEIC ACIDS RES, V42, pD472, DOI [10.1093/nar/gkt1102, 10.1093/nar/gkz1031]
[9]  
Cruz JA, 2006, CANCER INFORM, V2, P59
[10]   A framework for variation discovery and genotyping using next-generation DNA sequencing data [J].
DePristo, Mark A. ;
Banks, Eric ;
Poplin, Ryan ;
Garimella, Kiran V. ;
Maguire, Jared R. ;
Hartl, Christopher ;
Philippakis, Anthony A. ;
del Angel, Guillermo ;
Rivas, Manuel A. ;
Hanna, Matt ;
McKenna, Aaron ;
Fennell, Tim J. ;
Kernytsky, Andrew M. ;
Sivachenko, Andrey Y. ;
Cibulskis, Kristian ;
Gabriel, Stacey B. ;
Altshuler, David ;
Daly, Mark J. .
NATURE GENETICS, 2011, 43 (05) :491-+