mRNA vaccine for cancer immunotherapy

被引:665
作者
Miao, Lei [1 ]
Zhang, Yu [1 ]
Huang, Leaf [1 ]
机构
[1] Univ North Carolina Chapel Hill, Div Pharmacoengn & Mol Pharmaceut, Eshelman Sch Pharm, Chapel Hill, NC 27599 USA
关键词
Self-amplifying mRNA (SAM); mRNA delivery; Ionizable lipids; Lipid nanoparticles (LNPs); Cancer vaccine; Cancer immunotherapy; Personalized vaccine; SELF-AMPLIFYING RNA; T-CELL IMMUNITY; LIPID NANOPARTICLES; IN-VIVO; DENDRITIC CELLS; SIRNA DELIVERY; SYSTEMIC DELIVERY; PHASE IB; ADVANCED MELANOMA; PROSTATE-CANCER;
D O I
10.1186/s12943-021-01335-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
mRNA vaccines have become a promising platform for cancer immunotherapy. During vaccination, naked or vehicle loaded mRNA vaccines efficiently express tumor antigens in antigen-presenting cells (APCs), facilitate APC activation and innate/adaptive immune stimulation. mRNA cancer vaccine precedes other conventional vaccine platforms due to high potency, safe administration, rapid development potentials, and cost-effective manufacturing. However, mRNA vaccine applications have been limited by instability, innate immunogenicity, and inefficient in vivo delivery. Appropriate mRNA structure modifications (i.e., codon optimizations, nucleotide modifications, self-amplifying mRNAs, etc.) and formulation methods (i.e., lipid nanoparticles (LNPs), polymers, peptides, etc.) have been investigated to overcome these issues. Tuning the administration routes and co-delivery of multiple mRNA vaccines with other immunotherapeutic agents (e.g., checkpoint inhibitors) have further boosted the host anti-tumor immunity and increased the likelihood of tumor cell eradication. With the recent U.S. Food and Drug Administration (FDA) approvals of LNP-loaded mRNA vaccines for the prevention of COVID-19 and the promising therapeutic outcomes of mRNA cancer vaccines achieved in several clinical trials against multiple aggressive solid tumors, we envision the rapid advancing of mRNA vaccines for cancer immunotherapy in the near future. This review provides a detailed overview of the recent progress and existing challenges of mRNA cancer vaccines and future considerations of applying mRNA vaccine for cancer immunotherapies.
引用
收藏
页数:23
相关论文
共 148 条
[1]   A combinatorial library of lipid-like materials for delivery of RNAi therapeutics [J].
Akinc, Akin ;
Zumbuehl, Andreas ;
Goldberg, Michael ;
Leshchiner, Elizaveta S. ;
Busini, Valentina ;
Hossain, Naushad ;
Bacallado, Sergio A. ;
Nguyen, David N. ;
Fuller, Jason ;
Alvarez, Rene ;
Borodovsky, Anna ;
Borland, Todd ;
Constien, Rainer ;
de Fougerolles, Antonin ;
Dorkin, J. Robert ;
Jayaprakash, K. Narayanannair ;
Jayaraman, Muthusamy ;
John, Matthias ;
Koteliansky, Victor ;
Manoharan, Muthiah ;
Nechev, Lubomir ;
Qin, June ;
Racie, Timothy ;
Raitcheva, Denitza ;
Rajeev, Kallanthottathil G. ;
Sah, Dinah W. Y. ;
Soutschek, Juergen ;
Toudjarska, Ivanka ;
Vornlocher, Hans-Peter ;
Zimmermann, Tracy S. ;
Langer, Robert ;
Anderson, Daniel G. .
NATURE BIOTECHNOLOGY, 2008, 26 (05) :561-569
[2]   A neutral lipid envelope-type nanoparticle composed of a pH-activated and vitamin E-scaffold lipid-like material as a platform for a gene carrier targeting renal cell carcinoma [J].
Akita, Hidetaka ;
Ishiba, Ryohei ;
Togashi, Ryohei ;
Tange, Kota ;
Nakai, Yuta ;
Hatakeyama, Hiroto ;
Harashima, Hideyoshi .
JOURNAL OF CONTROLLED RELEASE, 2015, 200 :97-105
[3]   Investigating the Impact of Delivery System Design on the Efficacy of Self-Amplifying RNA Vaccines [J].
Anderluzzi, Giulia ;
Lou, Gustavo ;
Gallorini, Simona ;
Brazzoli, Michela ;
Johnson, Russell ;
O'Hagan, Derek T. ;
Baudner, Barbara C. ;
Perrie, Yvonne .
VACCINES, 2020, 8 (02)
[4]   Acetylation of Cytidine in mRNA Promotes Translation Efficiency [J].
Arango, Daniel ;
Sturgill, David ;
Alhusaini, Najwa ;
Dillman, Allissa A. ;
Sweet, Thomas J. ;
Hanson, Gavin ;
Hosogane, Masaki ;
Sinclair, Wilson R. ;
Nanan, Kyster K. ;
Mandler, Mariana D. ;
Fox, Stephen D. ;
Zengeya, Thomas T. ;
Andresson, Thorkell ;
Meier, Jordan L. ;
Coller, Jeffery ;
Oberdoerffer, Shalini .
CELL, 2018, 175 (07) :1872-+
[5]   A Facile Method for the Removal of dsRNA Contaminant from In Vitro-Transcribed mRNA [J].
Baiersdoerfer, Markus ;
Boros, Gabor ;
Muramatsu, Hiromi ;
Mahiny, Azita ;
Vlatkovic, Irena ;
Sahin, Ugur ;
Kariko, Katalin .
MOLECULAR THERAPY-NUCLEIC ACIDS, 2019, 15 :26-35
[6]   Once, Twice, Three Times a Finding: Reproducibility of Dendritic Cell Vaccine Trials Targeting Cytomegalovirus in Glioblastoma [J].
Batich, Kristen A. ;
Mitchell, Duane A. ;
Healy, Patrick ;
Herndon, James E., II ;
Sampson, John H. .
CLINICAL CANCER RESEARCH, 2020, 26 (20) :5297-5303
[7]   A Trans-amplifying RNA Vaccine Strategy for Induction of Potent Protective Immunity [J].
Beissert, Tim ;
Perkovic, Mario ;
Vogel, Annette ;
Erbar, Stephanie ;
Walzer, Kerstin C. ;
Hempel, Tina ;
Brill, Silke ;
Haefner, Erik ;
Becker, Rene ;
Tureci, Ozlem ;
Sahin, Ugur .
MOLECULAR THERAPY, 2020, 28 (01) :119-128
[8]   mRNA transfection by a Xentry-protamine cell-penetrating peptide is enhanced by TLR antagonist E6446 [J].
Bell, Glenn D. ;
Yang, Yi ;
Leung, Euphemia ;
Krissansen, Geoffrey W. .
PLOS ONE, 2018, 13 (07)
[9]   Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA [J].
Belliveau, Nathan M. ;
Huft, Jens ;
Lin, Paulo J. C. ;
Chen, Sam ;
Leung, Alex K. K. ;
Leaver, Timothy J. ;
Wild, Andre W. ;
Lee, Justin B. ;
Taylor, Robert J. ;
Tam, Ying K. ;
Hansen, Carl L. ;
Cullis, Pieter R. .
MOLECULAR THERAPY-NUCLEIC ACIDS, 2012, 1 :e37
[10]   Randomized, double-blind, Phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers [J].
Bernstein, David I. ;
Reap, Elizabeth A. ;
Katen, Kevin ;
Watson, Aubrey ;
Smith, Kaitlin ;
Norberg, Pamela ;
Olmsted, Robert A. ;
Hoeper, Amy ;
Morris, John ;
Negri, Sarah ;
Maughan, Maureen F. ;
Chulay, Jeffrey D. .
VACCINE, 2009, 28 (02) :484-493