Investigation on energy efficiency of rolling triboelectric nanogenerator using cylinder-cylindrical shell dynamic model

被引:25
作者
Gao, Wenchao [1 ]
Shao, Jiajia [2 ,3 ]
Sagoe-Crentsil, Kwesi [1 ]
Duan, Wenhui [1 ]
机构
[1] Monash Univ, Dept Civil Engn, Clayton, Vic 3800, Australia
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[3] Univ Chinese Acad Sci, Coll Nanosci & Technol, Beijing 100049, Peoples R China
基金
澳大利亚研究理事会;
关键词
Cylinder-cylindrical shell; Dynamic model; Blue energy; Triboelectric nanogenerator;
D O I
10.1016/j.nanoen.2020.105583
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The triboelectric nanogenerator (TENG) technology is rapidly becoming a promising candidate for harvesting wave energy from the ocean. In this paper, through an in-depth analysis of the working principle of spherical TENGs, for the first time, a dynamic model of this structure is proposed based on a cylinder-cylindrical shell configuration, and integrated into TENGs electric model. We verified the assumption that the motion of internal ball of the spherical TENGs is a small oscillation by comparing the V-Q-x relationship with experiments. The model reveals the influence of structural/material parameters, such as the radius of inner ball, density of material, and thickness of the shell on the energy output of TENGs. The results show that the change of the radius of the inner ball plays the dominant role on the power output with the other two parameters affecting the power output level of the TENG to varying degrees. These structural/material parameters can be combined to optimize and increase the output performance of spherical TENGs.
引用
收藏
页数:9
相关论文
共 34 条
[1]   Review on Power Performance and Efficiency of Wave Energy Converters [J].
Aderinto, Tunde ;
Li, Hua .
ENERGIES, 2019, 12 (22)
[2]   Self-Powered Wireless Sensor Node Enabled by a Duck-Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy [J].
Ahmed, Abdelsalam ;
Saadatnia, Zia ;
Hassan, Islam ;
Zi, Yunlong ;
Xi, Yi ;
He, Xu ;
Zu, Jean ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2017, 7 (07)
[3]   Dynamic modeling and trajectory planning for a mobile spherical robot with a 3Dof inner mechanism [J].
Azizi, Mahmood Reza ;
Naderi, Davood .
MECHANISM AND MACHINE THEORY, 2013, 64 :251-261
[4]   A review of wave energy converter technology [J].
Drew, B. ;
Plummer, A. R. ;
Sahinkaya, M. N. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2009, 223 (A8) :887-902
[5]   Wave energy utilization: A review of the technologies [J].
Falcao, Antonio F. de O. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (03) :899-918
[6]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[7]  
Halme A, 1996, AMC '96-MIE - 1996 4TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL, PROCEEDINGS, VOLS 1 AND 2, P259, DOI 10.1109/AMC.1996.509415
[8]   Perspectives on a way forward for ocean renewable energy in Australia [J].
Hemer, Mark A. ;
Manasseh, Richard ;
McInnes, Kathleen L. ;
Penesis, Irene ;
Pitman, Tracey .
RENEWABLE ENERGY, 2018, 127 :733-745
[9]   Dynamics of a rolling robot [J].
Ilin, K. I. ;
Moffatt, H. K. ;
Vladimirov, V. A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (49) :12858-12863
[10]   Catch the Wave to Electricity [J].
Leijon, Mats ;
Waters, Rafael ;
Rahm, Magnus ;
Svensson, Olle ;
Bostrom, Cecilia ;
Stromstedt, Erland ;
Engstrom, Jens ;
Rberg, Simon ;
Savin, Andrej ;
Gravrakmo, Halvar ;
Bernhoff, Hans ;
Sundberg, Jan ;
Isberg, Jan ;
Agren, Olov ;
Danielsson, Oskar ;
Eriksson, Mikael ;
Lejerskog, Erik ;
Bolund, Bjoern ;
Gustafsson, Stefan ;
Thorburn, Karin .
IEEE POWER & ENERGY MAGAZINE, 2009, 7 (01) :50-54