Composition dependent structure, dielectric and energy storage properties of Pb(Tm1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3 antiferroelectric ceramics

被引:29
作者
Xu, Liuwei [1 ,2 ]
He, Chao [1 ]
Yang, Xiaoming [1 ]
Wang, Zujian [1 ]
Li, Xiuzhi [1 ]
Tailor, Hamel N. [3 ]
Long, Xifa [1 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res, Key Lab Optoelect Mat Chem & Phys, Fuzhou 350002, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada
基金
中国国家自然科学基金;
关键词
Antiferroelectric ceramics; Perovskite; Curie-Weiss law; Dielectric properties; Energy storage; PHASE-TRANSITIONS; RENEWABLE ENERGY; LEAD ZIRCONATE; PEROVSKITE; (SR1-XCAX)TIO3; ORDER;
D O I
10.1016/j.jeurceramsoc.2017.04.005
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In order to stabilize the perovskite structure and improve the storage energy density (U) of Pb(Tm1/2Nb1/2)O-3 (PTmN) based materials, Pb(Mg1/3Nb2/3)O-3 (PMN) was introduced into PTmN to form binary (1-x)PTmN-xPMN solid solution ceramics. The XRD patterns show that all the compositions belong to orthorhombic phase with space group Pbnm. The Curie temperature (T-c) gradually decreases while the dielectric constant (epsilon') increases for (1-x)PTmN-xPMN with increasing PMN content. The epsilon' of each composition above Tc obeys the Curie-Weiss law. The appearance double hysteresis loop confirms the antiferroelectric nature of (1-x)PTmN-xPMN (x=0.02-0.18) ceramics. With the increase of PMN concentration, the maximum polarization slowly increases from 8.58 mu C/cm(2) to 29.51 mu C/cm(2) while the threshold electric field (EA-F) gradually declines from 2901N/cm to 120 kVicm. The maximum of U (3.12 J/cm(3)) is obtained in 0.92PTmN-0.08PMN ceramic with moderate EA-F = 220 kVicm, which makes (1-x)PTmN-xPMN ceramics safe in practical application. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3329 / 3334
页数:6
相关论文
共 37 条
[21]   Renewable energy strategies for sustainable development [J].
Lund, Henrik .
ENERGY, 2007, 32 (06) :912-919
[22]   Successive phase transitions in the highly ordered complex perovskite PbLu1/2Nb1/2O3 [J].
Park, Y ;
Knowles, KM ;
Cho, K .
PHASE TRANSITIONS, 1999, 68 (02) :411-421
[23]   TEM STUDY OF THE DISORDER ORDER PEROVSKITE, PB(IN1/2NB1/2)O3 [J].
RANDALL, CA ;
BARBER, DJ ;
GROVES, P ;
WHATMORE, RW .
JOURNAL OF MATERIALS SCIENCE, 1988, 23 (10) :3678-3682
[24]   Antiferroelectric phase transition in (Sr1-xCax)TiO3 (0.12 < x ≤ 0.40):: I.: Dielectric studies [J].
Ranjan, R ;
Pandey, D .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (19) :4239-4249
[25]   Antiferroelectric phase transition in (Sr1-xCax)TiO3 :: II.: X-ray diffracion studies [J].
Ranjan, R ;
Pandey, D .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (19) :4251-4266
[26]   Structural regularities and dielectric phenomena in the compound series PbB1/23+Nb1/2O3 [J].
Salak, AN ;
Shilin, AD ;
Bushinski, MV ;
Olekhnovich, NM ;
Vyshatko, NP .
MATERIALS RESEARCH BULLETIN, 2000, 35 (09) :1429-1438
[27]   On the physics of power, energy and economics of renewable electric energy sources - Part II [J].
Skoglund, Annika ;
Leijon, Mats ;
Rehn, Alf ;
Lindahl, Marcus ;
Waters, Rafael .
RENEWABLE ENERGY, 2010, 35 (08) :1735-1740
[28]   Morphotropic ceramic solid solutions of the Pb(B3+1/2Nb1/2)O3-PbTiO3 binary system [J].
Sternberg, A ;
Shebanovs, L ;
Yamashita, JY ;
Antonova, M ;
Livinsh, M .
FERROELECTRICS, 2000, 241 (1-4) :51-58
[29]   Relationship between dielectric properties and structural long-range order in (x)Pb(In1/2Nb1/2)O3:(1-x)Pb(Mg1/3Nb2/3)O3 relaxor ceramics [J].
Tai, C. W. ;
Baba-Kishi, K. Z. .
ACTA MATERIALIA, 2006, 54 (20) :5631-5640
[30]   Influence of annealing on B-site order and dielectric properties of (0.4)Pb(In1/2Nb1/2)O3:(0.6)Pb(Mg1/3Nb2/3)O3 relaxor ceramics [J].
Tai, Cheuk W. ;
Baba-Kishi, K. Z. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (11)