On periodic solutions of second-order differential equations with attractive-repulsive singularities

被引:81
作者
Hakl, Robert [1 ]
Torres, Pedro J. [2 ]
机构
[1] Inst Math AS CR, Brno 61662, Czech Republic
[2] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
Second-order ordinary differential equation; Singular equation; Periodic solution; Positive solution; EXISTENCE;
D O I
10.1016/j.jde.2009.07.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sufficient conditions for the existence of a solution to the problem u ''(t) = g(t/)/u(mu)(t) - h(t)/u(lambda)(t) + f(t) for a.e.t is an element of [0, omega]. u(0) = u(omega), u'(0) = u'(omega) are established. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:111 / 126
页数:16
相关论文
共 15 条
[1]  
BRAVO JL, PERIODIC SOLUTIONS S
[2]  
De Coster C., 1996, CISM COURSES LECT, V371, P1
[3]   PERIODIC-SOLUTIONS OF SOME LIENARD EQUATIONS WITH SINGULARITIES [J].
HABETS, P ;
SANCHEZ, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (04) :1035-1044
[4]   ON SEPARATION OF PHASES IN ONE-DIMENSIONAL GASES [J].
JOHANSSON, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 169 (03) :521-561
[5]  
Kunze M., 2001, NONLINEAR DYN SYST T, V1, P159
[6]   ON PERIODIC-SOLUTIONS OF NONLINEAR DIFFERENTIAL-EQUATIONS WITH SINGULARITIES [J].
LAZER, AC ;
SOLIMINI, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (01) :109-114
[7]   Twist property of periodic motion of an atom near a charged wire [J].
Lei, JZ ;
Zhang, MR .
LETTERS IN MATHEMATICAL PHYSICS, 2002, 60 (01) :9-17
[8]   Stabilization of solitons of the multidimensional nonlinear Schrodinger equation:: matter-wave breathers [J].
Montesinos, GD ;
Pérez-García, VM ;
Torres, PJ .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 191 (3-4) :193-210
[9]   Nonlinear dynamic analysis of atomic force microscopy under deterministic and random excitation [J].
Pishkenari, Hossein Nejat ;
Behzad, Mehdi ;
Meghdari, Ali .
CHAOS SOLITONS & FRACTALS, 2008, 37 (03) :748-762
[10]   Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems [J].
Rachunková, I ;
Tvrdy, M ;
Vrkoc, I .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 176 (02) :445-469