Soliton complexes in dissipative systems: Vibrating, shaking, and mixed soliton pairs

被引:96
作者
Soto-Crespo, J. M.
Grelu, Ph.
Akhmediev, N.
Devine, N.
机构
[1] CSIC, Inst Opt, E-28006 Madrid, Spain
[2] Univ Bourgogne, Fac Sci Mirande, UMR CNRS 5027, Phys Lab, F-21078 Dijon, France
[3] Australian Natl Univ, Res Sch Phys Sci & Engn, Opt Sci Grp, Canberra, ACT 0200, Australia
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 01期
关键词
D O I
10.1103/PhysRevE.75.016613
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show, numerically, that coupled soliton pairs in nonlinear dissipative systems modeled by the cubic-quintic complex Ginzburg-Landau equation can exist in various forms. They can be stationary, or they can pulsate periodically, quasiperiodically, or chaotically, as is the case for single solitons. In particular, we have found various types of vibrating and shaking soliton pairs. Each type is stable in the sense that a given bound state exists in the same form indefinitely. New solutions appear at special values of the equation parameters, thus bifurcating from stationary pairs. We also report the finding of mixed soliton pairs, formed by two different types of single solitons. We present regions of existence of the pair solutions and corresponding bifurcation diagrams.
引用
收藏
页数:9
相关论文
共 15 条
[1]   Three forms of localized solutions of the quintic complex Ginzburg-Landau equation [J].
Afanasjev, VV ;
Akhmediev, N ;
SotoCrespo, JM .
PHYSICAL REVIEW E, 1996, 53 (02) :1931-1939
[2]   Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach [J].
Akhmediev, N ;
Soto-Crespo, JM ;
Town, G .
PHYSICAL REVIEW E, 2001, 63 (05) :566021-566021
[3]   Interaction of dual-frequency pulses in passively mode-locked lasers [J].
Akhmediev, N ;
Rodrigues, AS ;
Town, GE .
OPTICS COMMUNICATIONS, 2001, 187 (4-6) :419-426
[4]  
Akhmediev N., 2005, LECT NOTES PHYS, DOI DOI 10.1007/B11728
[5]   Multisoliton solutions of the complex Ginzburg-Landau equation [J].
Akhmediev, NN ;
Ankiewicz, A ;
SotoCrespo, JM .
PHYSICAL REVIEW LETTERS, 1997, 79 (21) :4047-4051
[6]  
AKHMEDIEV NN, 1997, SOLITONS, pCH13
[7]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[8]   Dissipative solitons and their critical slowing down near a supercritical bifurcation [J].
Bakonyi, Z ;
Michaelis, D ;
Peschel, U ;
Onishchukov, G ;
Lederer, F .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (03) :487-491
[9]   REDUCING SOLITON INTERACTION IN SINGLE-MODE OPTICAL FIBERS [J].
DESEM, C ;
CHU, PL .
IEE PROCEEDINGS-J OPTOELECTRONICS, 1987, 134 (03) :145-151
[10]   Vibrating soliton pairs in a mode-locked laser cavity [J].
Grapinet, Melanie ;
Grelu, Philippe .
OPTICS LETTERS, 2006, 31 (14) :2115-2117