A Two-stage Deep Learning Detection Classifier for the ATLAS Asteroid Survey

被引:10
作者
Chyba Rabeendran, Amandin [1 ]
Denneau, Larry [2 ]
机构
[1] Colorado Sch Mines, Appl Math, 1500 Illinois St, Golden, CO 80401 USA
[2] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA
基金
美国国家科学基金会;
关键词
Convolutional neural networks; Asteroids; Sky surveys;
D O I
10.1088/1538-3873/abc900
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we present a two-step neural network model to separate detections of solar system objects from optical and electronic artifacts in data obtained with the "Asteroid Terrestrial-impact Last Alert System" (ATLAS), a near-Earth asteroid sky survey system. A convolutional neural network is used to classify small "postage-stamp" images of candidate detections of astronomical sources into eight classes, followed by a multi-layered perceptron that provides a probability that a temporal sequence of four candidate detections represents a real astronomical source. The goal of this work is to reduce the time delay between Near-Earth Object (NEO) detections and submission to the Minor Planet Center. Due to the rare and hazardous nature of NEOs, a low false negative rate is a priority for the model. We show that the model reaches 99.6% accuracy on real asteroids in ATLAS data with a 0.4% false negative rate. Deployment of this model on ATLAS has reduced the amount of NEO candidates that astronomers must screen by 90%, thereby bringing ATLAS one step closer to full autonomy.
引用
收藏
页数:12
相关论文
共 16 条
  • [1] EXTRATERRESTRIAL CAUSE FOR THE CRETACEOUS-TERTIARY EXTINCTION - EXPERIMENTAL RESULTS AND THEORETICAL INTERPRETATION
    ALVAREZ, LW
    ALVAREZ, W
    ASARO, F
    MICHEL, HV
    [J]. SCIENCE, 1980, 208 (4448) : 1095 - 1108
  • [2] [Anonymous], P 3 INT C LEARNING R
  • [3] Baron D., 2019, Machine Learning in Astronomy: A Practical Overview
  • [4] The Pan-STARRS Moving Object Processing System
    Denneau, Larry
    Jedicke, Robert
    Grav, Tommy
    Granvik, Mikael
    Kubica, Jeremy
    Milani, Andrea
    Veres, Peter
    Wainscoat, Richard
    Chang, Daniel
    Pierfederici, Francesco
    Kaiser, N.
    Chambers, K. C.
    Heasley, J. N.
    Magnier, Eugene A.
    Price, P. A.
    Myers, Jonathan
    Kleyna, Jan
    Hsieh, Henry
    Farnocchia, Davide
    Waters, Chris
    Sweeney, W. H.
    Green, Denver
    Bolin, Bryce
    Burgett, W. S.
    Morgan, J. S.
    Tonry, John L.
    Hodapp, K. W.
    Chastel, Serge
    Chesley, Steve
    Fitzsimmons, Alan
    Holman, Matthew
    Spahr, Tim
    Tholen, David
    Williams, Gareth V.
    Abe, Shinsuke
    Armstrong, J. D.
    Bressi, Terry H.
    Holmes, Robert
    Lister, Tim
    McMillan, Robert S.
    Micheli, Marco
    Ryan, Eileen V.
    Ryan, William H.
    Scotti, James V.
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2013, 125 (926) : 357 - 395
  • [5] DeepStreaks: identifying fast-moving objects in the Zwicky Transient Facility data with deep learning
    Duev, Dmitry A.
    Mahabal, Ashish
    Ye, Quanzhi
    Tirumala, Kushal
    Belicki, Justin
    Dekany, Richard
    Frederick, Sara
    Graham, Matthew J.
    Laher, Russ R.
    Masci, Frank J.
    Prince, Thomas A.
    Riddle, Reed
    Rosnet, Philippe
    Soumagnac, Maayane T.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 486 (03) : 4158 - 4165
  • [6] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [7] Densely Connected Convolutional Networks
    Huang, Gao
    Liu, Zhuang
    van der Maaten, Laurens
    Weinberger, Kilian Q.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2261 - 2269
  • [8] A survey of the recent architectures of deep convolutional neural networks
    Khan, Asifullah
    Sohail, Anabia
    Zahoora, Umme
    Qureshi, Aqsa Saeed
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (08) : 5455 - 5516
  • [9] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [10] Paszke A., 2017, ADV NEURAL INFORM PR, P8024