A Two-stage Deep Learning Detection Classifier for the ATLAS Asteroid Survey

被引:11
作者
Chyba Rabeendran, Amandin [1 ]
Denneau, Larry [2 ]
机构
[1] Colorado Sch Mines, Appl Math, 1500 Illinois St, Golden, CO 80401 USA
[2] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA
基金
美国国家科学基金会;
关键词
Convolutional neural networks; Asteroids; Sky surveys;
D O I
10.1088/1538-3873/abc900
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we present a two-step neural network model to separate detections of solar system objects from optical and electronic artifacts in data obtained with the "Asteroid Terrestrial-impact Last Alert System" (ATLAS), a near-Earth asteroid sky survey system. A convolutional neural network is used to classify small "postage-stamp" images of candidate detections of astronomical sources into eight classes, followed by a multi-layered perceptron that provides a probability that a temporal sequence of four candidate detections represents a real astronomical source. The goal of this work is to reduce the time delay between Near-Earth Object (NEO) detections and submission to the Minor Planet Center. Due to the rare and hazardous nature of NEOs, a low false negative rate is a priority for the model. We show that the model reaches 99.6% accuracy on real asteroids in ATLAS data with a 0.4% false negative rate. Deployment of this model on ATLAS has reduced the amount of NEO candidates that astronomers must screen by 90%, thereby bringing ATLAS one step closer to full autonomy.
引用
收藏
页数:12
相关论文
共 16 条
[1]   EXTRATERRESTRIAL CAUSE FOR THE CRETACEOUS-TERTIARY EXTINCTION - EXPERIMENTAL RESULTS AND THEORETICAL INTERPRETATION [J].
ALVAREZ, LW ;
ALVAREZ, W ;
ASARO, F ;
MICHEL, HV .
SCIENCE, 1980, 208 (4448) :1095-1108
[2]  
[Anonymous], P 3 INT C LEARNING R
[3]  
Baron D., 2019, Machine Learning in Astronomy: A Practical Overview
[4]   The Pan-STARRS Moving Object Processing System [J].
Denneau, Larry ;
Jedicke, Robert ;
Grav, Tommy ;
Granvik, Mikael ;
Kubica, Jeremy ;
Milani, Andrea ;
Veres, Peter ;
Wainscoat, Richard ;
Chang, Daniel ;
Pierfederici, Francesco ;
Kaiser, N. ;
Chambers, K. C. ;
Heasley, J. N. ;
Magnier, Eugene A. ;
Price, P. A. ;
Myers, Jonathan ;
Kleyna, Jan ;
Hsieh, Henry ;
Farnocchia, Davide ;
Waters, Chris ;
Sweeney, W. H. ;
Green, Denver ;
Bolin, Bryce ;
Burgett, W. S. ;
Morgan, J. S. ;
Tonry, John L. ;
Hodapp, K. W. ;
Chastel, Serge ;
Chesley, Steve ;
Fitzsimmons, Alan ;
Holman, Matthew ;
Spahr, Tim ;
Tholen, David ;
Williams, Gareth V. ;
Abe, Shinsuke ;
Armstrong, J. D. ;
Bressi, Terry H. ;
Holmes, Robert ;
Lister, Tim ;
McMillan, Robert S. ;
Micheli, Marco ;
Ryan, Eileen V. ;
Ryan, William H. ;
Scotti, James V. .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2013, 125 (926) :357-395
[5]   DeepStreaks: identifying fast-moving objects in the Zwicky Transient Facility data with deep learning [J].
Duev, Dmitry A. ;
Mahabal, Ashish ;
Ye, Quanzhi ;
Tirumala, Kushal ;
Belicki, Justin ;
Dekany, Richard ;
Frederick, Sara ;
Graham, Matthew J. ;
Laher, Russ R. ;
Masci, Frank J. ;
Prince, Thomas A. ;
Riddle, Reed ;
Rosnet, Philippe ;
Soumagnac, Maayane T. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 486 (03) :4158-4165
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[8]   A survey of the recent architectures of deep convolutional neural networks [J].
Khan, Asifullah ;
Sohail, Anabia ;
Zahoora, Umme ;
Qureshi, Aqsa Saeed .
ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (08) :5455-5516
[9]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[10]  
Paszke A., 2017, ADV NEURAL INFORM PR, P8024