Comparing interacting particles systems to cellular automata traffic flow models

被引:0
作者
Lassarre, Sylvain [1 ]
Tordeux, Antoine [2 ]
机构
[1] Genie Reseaux Transports Terr & Informat Avancee, Descartes 2,2 Rue Butte Verte, F-93166 Noisy Le Grand, France
[2] Univ Paris Est, Lab Ville Mobilite Transport, F-77455 Marne La Vallee, France
来源
INTERNATIONAL PROCEEDINGS ON CELLULAR AUTOMATA MODELING FOR URBAN AND SPATIAL SYSTEM, CAMUSS 2012 | 2012年
关键词
Interacting particles system; Cellular automata; Traffic flow; Continuous / discrete time; Exclusion process;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Some interacting particles systems, describing the stochastic evolution of particles jumping on a lattice, are since recently used to model traffic flow. The approach is close to cellular automata. Yet, the time is continuous with particles models while the evolution is discrete with cellular automata. We propose to compare and connect the two modelling approaches. The comparison is illustrated through the basic uni-dimensional totally asymmetric simple exclusion process.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 15 条
[1]   INVARIANT-MEASURES FOR THE ZERO RANGE PROCESS [J].
ANDJEL, ED .
ANNALS OF PROBABILITY, 1982, 10 (03) :525-547
[2]   Metastable states in cellular automata for traffic flow [J].
Barlovic, R ;
Santen, L ;
Schadschneider, A ;
Schreckenberg, M .
EUROPEAN PHYSICAL JOURNAL B, 1998, 5 (03) :793-800
[3]   THE MISANTHROPIC PROCESS [J].
COCOZZATHIVENT, C .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (04) :509-523
[4]   Phase transitions in stochastic models of flow [J].
Evans, Martin R. .
TRAFFIC AND GRANULAR FLOW ' 05, 2007, :447-459
[5]   Traffic and related self-driven many-particle systems [J].
Helbing, D .
REVIEWS OF MODERN PHYSICS, 2001, 73 (04) :1067-1141
[6]   Exact solution of the zero-range process: fundamental diagram of the corresponding exclusion process [J].
Kanai, Masahiro .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (26) :7127-7138
[7]   Two-lane traffic-flow model with an exact steady-state solution [J].
Kanai, Masahiro .
PHYSICAL REVIEW E, 2010, 82 (06)
[8]   Zero-range model of traffic flow [J].
Kaupuzs, J ;
Mahnke, R ;
Harris, RJ .
PHYSICAL REVIEW E, 2005, 72 (05)
[9]   EVIDENCE FOR A NEW PHASE IN THE DOMANY-KINZEL CELLULAR AUTOMATON [J].
MARTINS, ML ;
DERESENDE, HFV ;
TSALLIS, C ;
DEMAGALHAES, ACN .
PHYSICAL REVIEW LETTERS, 1991, 66 (15) :2045-2047
[10]  
NAGEL K, 1992, J PHYS I, V2, P2221, DOI 10.1051/jp1:1992277