High Power and Energy Density Aqueous Proton Battery Operated at-90 °C

被引:134
作者
Sun, Tianjiang [1 ]
Du, Haihui [1 ]
Zheng, Shibing [1 ]
Shi, Jinqiang [1 ]
Tao, Zhanliang [1 ]
机构
[1] Nankai Univ, Key Lab Adv Energy Mat Chem, Coll Chem, Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
alloxazine; aqueous proton batteries; high power density; hybrid electrolytes; low temperature; ION; STORAGE;
D O I
10.1002/adfm.202010127
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Freezing electrolyte and sluggish ionic migration kinetics limited the low-temperature performance of rechargeable batteries. Here, an aqueous proton battery is developed, which achieves both high power density and energy density at the ultralow temperature conditions. Electrolyte including 2 m HBF4 + 2 m Mn(BF4)(2) is used for the ultralow freezing point of below -160 degrees C and high ionic conductivity of 0.21 mS cm(-1) at -70 degrees C. Spectroscopic and nuclear magnetic resonance analysis demonstrate the introduction of BF4- anions efficiently break the hydrogen-bond networks of original water molecules, resulting in ultralow freezing point. Based on H+ uptake/removal reaction in alloxazine (ALO) anode and MnO2/Mn2+ conversion in carbon felt cathode, the aqueous proton battery can operate regularly even at -90 degrees C and obtain a high specific discharge capacity of 85 mA h g(-1). Benefiting from the rapid diffusion of proton and the pseudocapacitive character of ALO electrolyte, this battery shows a high specific energy density of 110 Wh kg(-1) at a specific power density of 1650 W kg(-1) at -60 degrees C. This work presents a new way of developing low-temperature batteries.
引用
收藏
页数:7
相关论文
共 25 条
[1]  
Armand M, 2009, NAT MATER, V8, P120, DOI [10.1038/nmat2372, 10.1038/NMAT2372]
[2]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[3]   Isolating and Probing the Hot Spot Formed between Two Silver Nanocubes [J].
Camargo, Pedro H. C. ;
Rycenga, Matthew ;
Au, Leslie ;
Xia, Younan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (12) :2180-2184
[4]   An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices [J].
Chang, Nana ;
Li, Tianyu ;
Li, Rui ;
Wang, Shengnan ;
Yin, Yanbin ;
Zhang, Huamin ;
Li, Xianfeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3527-3535
[5]   Organic Batteries Operated at -70°C [J].
Dong, Xiaoli ;
Guo, Zhaowei ;
Guo, Ziyang ;
Wang, Yonggang ;
Xia, Yongyao .
JOULE, 2018, 2 (05) :902-913
[6]   Hydrogen bonding effect on Raman modes of Formic acid-water binary solutions [J].
Dou, Zhenguo ;
Wang, Lijun ;
Hu, Junying ;
Fang, Wenhui ;
Sun, Chenglin ;
Men, Zhiwei .
JOURNAL OF MOLECULAR LIQUIDS, 2020, 313
[7]   A high voltage aqueous zinc-manganese battery using a hybrid alkaline-mild electrolyte [J].
Fan, Weijia ;
Liu, Fei ;
Liu, Yu ;
Wu, Zhixian ;
Wang, Lili ;
Zhang, Yi ;
Huang, Qinghong ;
Fu, Lijun ;
Wu, Yuping .
CHEMICAL COMMUNICATIONS, 2020, 56 (13) :2039-2042
[8]   Zn/MnO2 battery chemistry with dissolution-deposition mechanism [J].
Guo, Xun ;
Zhou, Jiang ;
Bai, Chaolei ;
Li, Xinkuo ;
Fang, Guozhao ;
Liang, Shuquan .
MATERIALS TODAY ENERGY, 2020, 16
[9]   An organic/inorganic electrode-based hydronium-ion battery [J].
Guo, Zhaowei ;
Huang, Jianhang ;
Dong, Xiaoli ;
Xia, Yongyao ;
Yan, Lei ;
Wang, Zhuo ;
Wang, Yonggang .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]   Biologically inspired pteridine redox centres for rechargeable batteries [J].
Hong, Jihyun ;
Lee, Minah ;
Lee, Byungju ;
Seo, Dong-Hwa ;
Park, Chan Beum ;
Kang, Kisuk .
NATURE COMMUNICATIONS, 2014, 5