Iris matching by means of Machine Learning paradigms: A new approach to dissimilarity computation

被引:6
作者
Aginako, Naiara [1 ]
Echegaray, Goretti [1 ]
Martinez-Otzeta, J. M. [2 ]
Rodriguez, Igor [2 ]
Lazkano, Elena [2 ]
Sierra, Basilio [2 ]
机构
[1] Univ Basque Country, Appl Math Dept, Robot & Autonomous Syst Res Grp, Donostia San Sebastian 20018, Spain
[2] Univ Basque Country, Comp Sci & Artificial Intelligence Dept, Robot & Autonomous Syst Res Grp, Donostia San Sebastian 20018, Spain
关键词
Image Processing; Machine Learning; Biometrics; Iris recognition; Dissimilarity computation; RECOGNITION;
D O I
10.1016/j.patrec.2017.01.019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel approach for iris dissimilarity computation based on Computer Vision and Machine Learning. First, iris images are processed using well-known image processing algorithms. Pixels of the output image are considered the input of the previously trained classifiers, obtaining the a posteriori probability for each of the considered class values. The main novelty of the presented work remains in the computation of the dissimilarity value of two iris images as the distance between the aforementioned a posteriori probabilities. Experimental results, based on the testing dataset given by the MICHE II Challenge organizers, indicate the appropriateness of the deployed method for the iris recognition task. Best results show a precision score above 90% even for iris images of new individuals. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 64
页数:5
相关论文
共 24 条
  • [1] Aginako N., 2016, INT C PATT REC
  • [2] INSTANCE-BASED LEARNING ALGORITHMS
    AHA, DW
    KIBLER, D
    ALBERT, MK
    [J]. MACHINE LEARNING, 1991, 6 (01) : 37 - 66
  • [3] [Anonymous], 2003, MATLAB SOURCE CODE B
  • [4] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [5] Cestnik B., 1990, ECAI 90. Proceedings of the 9th European Conference on Artificial Intelligence, P147
  • [6] How iris recognition works
    Daugman, J
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2004, 14 (01) : 21 - 30
  • [7] Daugman J, 2003, PATTERN RECOGN, V36, P279, DOI 10.1016/S0031-3203(02)00030-4
  • [8] HIGH CONFIDENCE VISUAL RECOGNITION OF PERSONS BY A TEST OF STATISTICAL INDEPENDENCE
    DAUGMAN, JG
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (11) : 1148 - 1161
  • [9] Mobile Iris Challenge Evaluation (MICHE)-I, biometric iris dataset and protocols
    De Marsico, Maria
    Nappi, Michele
    Riccio, Daniel
    Wechsler, Harry
    [J]. PATTERN RECOGNITION LETTERS, 2015, 57 : 17 - 23
  • [10] Noisy Iris Recognition Integrated Scheme
    De Marsico, Maria
    Nappi, Michele
    Ricci, Daniel
    [J]. PATTERN RECOGNITION LETTERS, 2012, 33 (08) : 1006 - 1011