Real-time time-dependent density functional theory implementation of electronic circular dichroism applied to nanoscale metal-organic clusters

被引:23
作者
Makkonen, Esko [1 ]
Rossi, Tuomas P. [1 ,2 ]
Larsen, Ask Hjorth [3 ]
Lopez-Acevedo, Olga [4 ]
Rinke, Patrick [1 ]
Kuisma, Mikael [5 ]
Chen, Xi [1 ]
机构
[1] Aalto Univ, Dept Appl Phys, Espoo, Finland
[2] Chalmers Univ Technol, Dept Phys, Gothenburg, Sweden
[3] Simune Atomist SL, Donostia San Sebastian, Spain
[4] Univ Antioquia, Fac Ciencias Exactas & Nat, Inst Fis, Medellin, Colombia
[5] Univ Jyvaskyla, Nanosci Ctr, Jyvaskyla, Finland
基金
欧盟地平线“2020”; 芬兰科学院;
关键词
AB-INITIO CALCULATION; CHIRALITY; APPROXIMATION; NANOPARTICLES; DYNAMICS; PLASMON;
D O I
10.1063/5.0038904
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electronic circular dichroism (ECD) is a powerful spectroscopy method for investigating chiral properties at the molecular level. ECD calculations with the commonly used linear-response time-dependent density functional theory (LR-TDDFT) framework can be prohibitively costly for large systems. To alleviate this problem, we present here an ECD implementation within the projector augmented-wave method in a real-time-propagation TDDFT framework in the open-source GPAW code. Our implementation supports both local atomic basis sets and real-space finite-difference representations of wave functions. We benchmark our implementation against an existing LR-TDDFT implementation in GPAW for small chiral molecules. We then demonstrate the efficiency of our local atomic basis set implementation for a large hybrid nanocluster and discuss the chiroptical properties of the cluster.
引用
收藏
页数:8
相关论文
共 52 条
[31]   BEYOND NATURES CHIRAL POOL - ENANTIOSELECTIVE CATALYSIS IN INDUSTRY [J].
NUGENT, WA ;
RAJANBABU, TV ;
BURK, MJ .
SCIENCE, 1993, 259 (5094) :479-483
[32]  
PEDERSEN TB, 1995, CHEM PHYS LETT, V246, P1, DOI 10.1016/0009-2614(95)01036-9
[33]  
Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
[34]   Excitation energies from time-dependent density-functional theory [J].
Petersilka, M ;
Gossmann, UJ ;
Gross, EKU .
PHYSICAL REVIEW LETTERS, 1996, 76 (08) :1212-1215
[35]   New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community [J].
Pritchard, Benjamin P. ;
Altarawy, Doaa ;
Didier, Brett ;
Gibson, Tara D. ;
Windus, Theresa L. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (11) :4814-4820
[36]   Electron dynamics with real-time time-dependent density functional theory [J].
Provorse, Makenzie R. ;
Isborn, Christine M. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2016, 116 (10) :739-749
[37]   Kohn-Sham Decomposition in Real-Time Time-Dependent Density-Functional Theory: An Efficient Tool for Analyzing Plasmonic Excitations [J].
Rossi, Tuomas P. ;
Kuisma, Mikael ;
Puska, Martti J. ;
Nieminen, Risto M. ;
Erhart, Paul .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (10) :4779-4790
[38]   Nanoplasmonics simulations at the basis set limit through completeness-optimized, local numerical basis sets [J].
Rossi, Tuomas P. ;
Lehtola, Susi ;
Sakko, Arto ;
Puska, Martti J. ;
Nieminen, Risto M. .
JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (09)
[39]   DENSITY-FUNCTIONAL THEORY FOR TIME-DEPENDENT SYSTEMS [J].
RUNGE, E ;
GROSS, EKU .
PHYSICAL REVIEW LETTERS, 1984, 52 (12) :997-1000
[40]   Controlled synthesis of single-chirality carbon nanotubes [J].
Sanchez-Valencia, Juan Ramon ;
Dienel, Thomas ;
Groening, Oliver ;
Shorubalko, Ivan ;
Mueller, Andreas ;
Jansen, Martin ;
Amsharov, Konstantin ;
Ruffieux, Pascal ;
Fasel, Roman .
NATURE, 2014, 512 (7512) :61-+